Functional identification of two novel carbohydrate-binding modules of glucuronoxylanase CrXyl30 and their contribution to the lignocellulose saccharification

Author:

Liu Jiawen,Zhu Jingrong,Xu Qian,Shi Rui,Liu Cong,Sun Di,Liu Weijie

Abstract

Abstract Background Glycoside hydrolase (GH) family 30 xylanases are a distinct group of xylanases, most of which have a highly specific catalytic activity for glucuronoxylan. Since GH30 xylanases do not normally carry carbohydrate-binding modules (CBMs), our knowledge of the function of their CBMs is lacking. Results In this work, the CBM functions of CrXyl30 were investigated. CrXyl30 was a GH30 glucuronoxylanase containing tandem CBM13 (CrCBM13) and CBM2 (CrCBM2) at its C terminus, which was identified in a lignocellulolytic bacterial consortium previously. Both CBMs could bind insoluble and soluble xylan, with CrCBM13 having binding specificity for the xylan with l-arabinosyl substitutions, whereas CrCBM2 targeted l-arabinosyl side chains themselves. Such binding abilities of these two CBMs were completely different from other CBMs in their respective families. Phylogenetic analysis also suggested that both CrCBM13 and CrCBM2 belong to novel branches. Inspection of the simulated structure of CrCBM13 identified a pocket that just accommodates the side chain of 3(2)-alpha-l-arabinofuranosyl-xylotriose, which forms hydrogen bonds with three of the five amino acid residues involved in ligand interaction. The truncation of either CrCBM13 or CrCBM2 did not alter the substrate specificity and optimal reaction conditions of CrXyl30, whereas truncation of CrCBM2 decreased the kcat/Km value by 83% (± 0%). Moreover, the absence of CrCBM2 and CrCBM13 resulted in a 5% (± 1%) and a 7% (± 0%) decrease, respectively, in the amount of reducing sugar released by the synergistic hydrolysis of delignified corncob whose hemicellulose is arabinoglucuronoxylan, respectively. In addition, fusion of CrCBM2 with a GH10 xylanase enhanced its catalytic activity against the branched xylan and improved the synergistic hydrolysis efficiency by more than fivefold when delignified corncob was used as substrate. Such a strong stimulation of hydrolysis resulted from the enhancement of hemicellulose hydrolysis on the one hand, and the cellulose hydrolysis is also improved according to the lignocellulose conversion rate measured by HPLC. Conclusions This study identifies the functions of two novel CBMs in CrXyl30 and shows the good potential of such CBMs specific for branched ligands in the development of efficient enzyme preparations.

Funder

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Jiangsu Agricultural Science and Technology Innovation Fund

Postgraduate Research & Practice Innovation Program of Jiangsu Normal University

Six Talent Peaks Project in Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3