Author:
Stylianou Eleni,Pateraki Chrysanthi,Ladakis Dimitrios,Cruz-Fernández María,Latorre-Sánchez Marcos,Coll Caterina,Koutinas Apostolis
Abstract
Abstract
Background
Despite its high market potential, bio-based succinic acid production experienced recently a declining trend because the initial investments did not meet the expectations for rapid market growth. Thus, reducing the succinic acid production cost is imperative to ensure industrial implementation.
Results
Succinic acid production has been evaluated using hydrolysates from the organic fraction of municipal solid waste (OFMSW) collected from MSW treatment plants. A tailor-made enzymatic cocktail was used for OFMSW hydrolysate production containing up to 107.3 g/L carbon sources and up to 638.7 mg/L free amino nitrogen. The bacterial strains Actinobacillus succinogenes and Basfia succiniciproducens were evaluated for succinic acid production with the latter strain being less efficient due to high lactic acid production. Batch A. succinogenes cultures supplemented with 5 g/L yeast extract and 5 g/L MgCO3 reached 29.4 g/L succinic acid with productivity of 0.89 g/L/h and yield of 0.56 g/g. Continuous cultures at dilution rate of 0.06 h−1 reached 21.2 g/L succinic acid with yield of 0.47 g/g and productivity of 1.27 g/L/h. Downstream separation and purification of succinic acid was achieved by centrifugation, treatment with activated carbon, acidification with cation exchange resins, evaporation and drying, reaching more than 99% purity. Preliminary techno-economic evaluation has been employed to evaluate the profitability potential of bio-based succinic acid production.
Conclusions
The use of OFMSW hydrolysate in continuous cultures could lead to a minimum selling price of 2.5 $/kg at annual production capacity of 40,000 t succinic acid and OFMSW hydrolysate production cost of 25 $/t sugars.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference51 articles.
1. Eurostat. https://ec.europa.eu/eurostat/. Accessed 10 Dec 2019.
2. EUR-lex. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.150.01.0109.01.ENG. Accessed 10 Dec 2019.
3. European Environment Agency, 2013. https://www.eea.europa.eu. Accessed 10 Dec 2019.
4. Pagliano G, Ventorino V, Panico A, Pepe O. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes. Biotechnol Biofuels. 2017;10:113.
5. Colombo B, Favini F, Scaglia B, Sciarria TP, D’Imporzano G, Pognani M, Alekseeva A, Eisele G, Cosentino C, Adani F. Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture. Biotechnol Biofuels. 2017;10:201.
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献