Abstract
Abstract
Background
For bioethanol production from lignocellulosic biomass, phenolics derived from pretreatment have been generally considered as highly inhibitory towards enzymatic hydrolysis and fermentation. As phenolics are produced from lignin degradation during pretreatment, it is likely that the pretreatment will exert a strong impact on the structure of phenolics, resulting in varied levels of inhibition of the bioconversion process. Despite the extensive studies on pretreatment, it remains unclear how pretreatment process affects the properties of generated phenolics and how the inhibitory effect of phenolics from different pretreatment varies on enzymatic hydrolysis and fermentation.
Results
In this study, the structural properties of phenolic compounds derived from four typical pretreatment [dilute acid (DA), liquid hot water pretreatment (LHW), ammonia fiber expansion (AFEX) and alkaline pretreatment (AL)] were characterized, and their effect on both enzymatic hydrolysis and fermentation were evaluated. The inhibitory effect of phenolics on enzymatic hydrolysis followed the order: AFEX > LHW > DA > AL, while the inhibitory effect of phenolics on Zymomonas mobilis 8b strain fermentation followed the order: AL > LHW > DA > AFEX. Interestingly, this study revealed that phenolics derived from AFEX showed more severe inhibitory effect on enzymatic hydrolysis than those from the other pretreatments at the same phenolics concentrations (note: AFEX produced much less amount of phenolics compared to AL and DA), while they exhibited the lowest inhibitory effect on fermentation. The composition of phenolics from different pretreatments was analyzed and model phenolics were applied to explore the reason for this difference. The results suggested that the amide group in phenolics might account for this difference.
Conclusions
Pretreatment process greatly affects the properties of generated phenolics and the inhibitory effects of phenolics on enzymatic hydrolysis and fermentation. This study provides new insight for further pretreatment modification and hydrolysate detoxification to minimize phenolics-caused inhibition and enhance the efficiency of enzymatic hydrolysis and fermentation.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Fundamental Research Funds for the Central Universities
Natioanal Key R&D Program of China
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献