Abstract
Abstract
Background
The growth of the cellulosic ethanol industry is currently impeded by high production costs. One possible solution is to improve the performance of fermentation itself, which has great potential to improve the economics of the entire production process. Here, we demonstrated significantly improved productivity through application of an advanced fermentation approach, named self-cycling fermentation (SCF), for cellulosic ethanol production.
Results
The flow rate of outlet gas from the fermenter was used as a real-time monitoring parameter to drive the cycling of the ethanol fermentation process. Then, long-term operation of SCF under anaerobic conditions was improved by the addition of ergosterol and fatty acids, which stabilized operation and reduced fermentation time. Finally, an automated SCF system was successfully operated for 21 cycles, with robust behavior and stable ethanol production. SCF maintained similar ethanol titers to batch operation while significantly reducing fermentation and down times. This led to significant improvements in ethanol volumetric productivity (the amount of ethanol produced by a cycle per working volume per cycle time)—ranging from 37.5 to 75.3%, depending on the cycle number, and in annual ethanol productivity (the amount of ethanol that can be produced each year at large scale)—reaching 75.8 ± 2.9%. Improved flocculation, with potential advantages for biomass removal and reduction in downstream costs, was also observed.
Conclusion
Our successful demonstration of SCF could help reduce production costs for the cellulosic ethanol industry through improved productivity and automated operation.
Funder
Canada First Research Excellence Fund
Future Energy Systems - University of Alberta
BioFuelNet Canada
Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference30 articles.
1. 110th United States Congress, H.R.6: Energy Independence and Security Act of 2007. 2007. https://www.congress.gov/bill/110th-congress/house-bill/6. Accessed 3 Oct 2019.
2. POET-DSM achieves cellulosic biofuel breakthrough. 2017. http://poet-dsm.com/pr/poet-dsm-achieves-cellulosic-biofuel-breakthrough. Accessed 31 July 2019.
3. Brunecky R, Donohoe BS, Yarbrough JM, Mittal A, Scott BR, Ding H, et al. The multi domain Caldicellulosiruptor bescii CelA cellulase excels at the hydrolysis of crystalline cellulose. Sci Rep. 2017;7:9622.
4. Nguyen TY, Cai CM, Kumar R, Wyman CE. Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol. Proc Natl Acad Sci. 2017;114:11673–8.
5. Wang J, Chae M, Sauvageau D, Bressler DC. Improving ethanol productivity through self-cycling fermentation of yeast: a proof of concept. Biotechnol Biofuels. 2017;10:193.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献