Engineering prokaryotic regulator IrrE to enhance stress tolerance in budding yeast

Author:

Wang Li,Wang Xin,He Zhi-Qiang,Zhou Si-Jie,Xu Li,Tan Xiao-Yu,Xu Tao,Li Bing-Zhi,Yuan Ying-Jin

Abstract

AbstractBackgroundStress tolerance is one of the important desired microbial traits for industrial bioprocesses, and global regulatory protein engineering is an efficient approach to improve strain tolerance. In our study, IrrE, a global regulatory protein from the prokaryotic organismDeinococcus radiodurans, was engineered to confer yeast improved tolerance to the inhibitors in lignocellulose hydrolysates or high temperatures.ResultsThree IrrE mutations were developed through directed evolution, and the expression of these mutants could improve the yeast fermentation rate by threefold or more in the presence of multiple inhibitors. Subsequently, the tolerance to multiple inhibitors of single-site mutants based on the mutations from the variants were then evaluated, and 11 mutants, including L65P, I103T, E119V, L160F, P162S, M169V, V204A, R244G, Base 824 Deletion, V299A, and A300V were identified to be critical for the improved representative inhibitors, i.e., furfural, acetic acid and phenol (FAP) tolerance. Further studies indicated that IrrE caused genome-wide transcriptional perturbation in yeast, and the mutant I24 led to the rapid growth ofSaccharomyces cerevisiaeby primarily regulating the transcription level of transcription activators/factors, protecting the intracellular environment and enhancing the antioxidant capacity under inhibitor environments, which reflected IrrE plasticity. Meanwhile, we observed that the expression of the wild-type or mutant IrrE could also protectSaccharomyces cerevisiaefrom the damage caused by thermal stress. The recombinant yeast strains were able to grow with glucose at 42 ℃.ConclusionsIrrE fromDeinococcus radioduranscan be engineered as a tolerance-enhancer forSaccharomyces cerevisiae. Systematic research on the regulatory model and mechanism of a prokaryotic global regulatory factor IrrE to increase yeast tolerance provided valuable insights for the improvements in microbial tolerance to complex industrial stress conditions.

Funder

Tianjin Fund for Distinguished Young Scholars

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3