Author:
Guo Liangxing,Chao Hongbo,Yin Yongtai,Li Huaixin,Wang Hao,Zhao Weiguo,Hou Dalin,Zhang Libin,Zhang Chunyu,Li Maoteng
Abstract
Abstract
Background
Increasing seed oil content is the most important breeding goal in Brassica napus, and phenotyping is crucial to dissect its genetic basis in crops. To date, QTL mapping for oil content has been based on whole seeds, and the lipid distribution is far from uniform in different tissues of seeds in B. napus. In this case, the phenotype based on whole seeds was unable to sufficiently reveal the complex genetic characteristics of seed oil content.
Results
Here, the three-dimensional (3D) distribution of lipid was determined for B. napus seeds by magnetic resonance imaging (MRI) and 3D quantitative analysis, and ten novel oil content-related traits were obtained by subdividing the seeds. Based on a high-density genetic linkage map, 35 QTLs were identified for 4 tissues, the outer cotyledon (OC), inner cotyledon (IC), radicle (R) and seed coat (SC), which explained up to 13.76% of the phenotypic variation. Notably, 14 tissue-specific QTLs were reported for the first time, 7 of which were novel. Moreover, haplotype analysis showed that the favorable alleles for different seed tissues exhibited cumulative effects on oil content. Furthermore, tissue-specific transcriptomes revealed that more active energy and pyruvate metabolism influenced carbon flow in the IC, OC and R than in the SC at the early and middle seed development stages, thus affecting the distribution difference in oil content. Combining tissue-specific QTL mapping and transcriptomics, 86 important candidate genes associated with lipid metabolism were identified that underlie 19 unique QTLs, including the fatty acid synthesis rate-limiting enzyme-related gene CAC2, in the QTLs for OC and IC.
Conclusions
The present study provides further insight into the genetic basis of seed oil content at the tissue-specific level.
Funder
National Natural Science Foundation of China
National Key Research and Development Program
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology
Reference70 articles.
1. Wang H. Strategy for rapeseed genetic improvement in China in the coming fifteen years. Chin J Oil Crop Sci. 2004;26(2):98–101.
2. Hua W, Liu J, Wang H. Molecular regulation and genetic improvement of seed oil content in Brassica napus L. Front Agric Sci Eng. 2016;3(3):186–94.
3. Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell. 1995;7(7):957.
4. Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet. 2008;40(3):367–72.
5. Baud S, Lepiniec L. Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis. Plant Physiol Biochem. 2009;47(6):448–55.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献