Author:
Cajnko Miša Mojca,Novak Uroš,Grilc Miha,Likozar Blaž
Abstract
Abstract
Background
2,5-Furandicarboxylic acid (FDCA) is one of the top biomass-derived value-added chemicals. It can be produced from fructose and other C6 sugars via formation of 5-hydroxymethilfurfural (HMF) intermediate. Most of the chemical methods for FDCA production require harsh conditions, thus as an environmentally friendly alternative, an enzymatic conversion process can be applied.
Results
Commercially available horseradish peroxidase (HRP) and lignin peroxidase (LPO), alcohol (AO) and galactose oxidase (GO), catalase (CAT) and laccase (LAC) were tested against HMF, 2,5-diformylfuran (DFF), 5-hydroxymethyl-2-furoic acid (HMFA) and 5-formyl-2-furoic acid (FFA). Enzyme concentrations were determined based on the number of available active sites and reactions performed at atmospheric oxygen pressure. AO, GO, HRP and LPO were active against HMF, where LPO and HRP produced 0.6 and 0.7% of HMFA, and GO and AO produced 25.5 and 5.1% DFF, respectively. Most of the enzymes had only mild (3.2% yield or less) or no activity against DFF, HMFA and FFA, with only AO having a slightly higher activity against FFA with an FDCA yield of 11.6%. An effect of substrate concentration was measured only for AO, where 20 mM HMF resulted in 19.5% DFF and 5 mM HMF in 39.9% DFF, with a Km value of 14 mM. Some multi-enzyme reactions were also tested and the combination of AO and CAT proved most effective in converting over 97% HMF to DFF in 72 h.
Conclusions
Our study aimed at understanding the mechanism of conversion of bio-based HMF to FDCA by different selected enzymes. By understanding the reaction pathway, as well as substrate specificity and the effect of substrate concentration, we would be able to better optimize this process and obtain the best product yields in the future.
Funder
Javna Agencija za Raziskovalno Dejavnost RS
Ministrstvo za Izobraževanje, Znanost in Šport
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献