Turning C1-gases to isobutanol towards great environmental and economic sustainability via innovative biological routes: two birds with one stone

Author:

Liang Bobo,Fu Rongzhan,Ma Yingqun,Hu Lizhen,Fei QiangORCID,Xing Xin-Hui

Abstract

Abstract Background The dramatic increase in greenhouse gas (GHG) emissions, which causes serious global environmental issues and severe climate changes, has become a global problem of concern in recent decades. Currently, native and/or non-native C1-utilizing microbes have been modified to be able to effectively convert C1-gases (biogas, natural gas, and CO2) into isobutanol via biological routes. Even though the current experimental results are satisfactory in lab-scale research, the techno-economic feasibility of C1 gas-derived isobutanol production at the industrial scale still needs to be analyzed and evaluated, which will be essential for the future industrialization of C1-gas bioconversion. Therefore, techno-economic analyses were conducted in this study with comparisons of capital cost (CAPEX), operating cost (OPEX), and minimum isobutanol selling price (MISP) derived from biogas (scenario #1), natural gas (scenario #2), and CO2 (scenario #3) with systematic economic assessment. Results By calculating capital investments and necessary expenses, the highest CAPEX ($317 MM) and OPEX ($67 MM) were projected in scenario #1 and scenario #2, respectively. Because of the lower CAPEX and OPEX from scenario #3, the results revealed that bioconversion of CO2 into isobutanol temporally exhibited the best economic performance with an MISP of $1.38/kg isobutanol. Furthermore, a single sensitivity analysis with nine different parameters was carried out for the production of CO2-derived isobutanol. The annual plant capacity, gas utilization rate, and substrate cost are the three most important economic-driving forces on the MISP of CO2-derived isobutanol. Finally, a multiple-point sensitivity analysis considering all five parameters simultaneously was performed using ideal targets, which presented the lowest MISP of $0.99/kg in a long-term case study. Conclusions This study provides a comprehensive assessment of the bioconversion of C1-gases into isobutanol in terms of the bioprocess design, mass/energy calculation, capital investment, operating expense, sensitivity analysis, and minimum selling price. Compared with isobutanol derived from biogas and natural gas, the CO2-based isobutanol showed better economic feasibility. A market competitive isobutanol derived from CO2 is predicable with lower CO2 cost, better isobutanol titer, and higher annual capacity. This study will help researchers and decision-makers explore innovative and effective approaches to neutralizing GHGs and focus on key economic-driving forces to improve techno-economic performance.

Funder

National Key R&D Programs of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3