Abstract
Abstract
Background
Laccases and laccase-like multicopper oxidases (LMCOs) oxidize a vast array of phenolic compounds and amines, releasing water as a byproduct. Their low substrate specificity is responsible for their tremendous biotechnological interest, since they have been used for numerous applications. However, the laccases characterized so far correspond to only a small fraction of the laccase genes identified in fungal genomes. Therefore, the knowledge regarding the biochemistry and physiological role of minor laccase-like isoforms is still limited.
Results
In the present work, we describe the isolation, purification and characterization of two novel LMCOs, PcLac1 and PcLac2, from Pleurotus citrinopileatus. Both LMCOs were purified with ion-exchange chromatographic methods. PcLac2 was found to oxidize a broader substrate range than PcLac1, but both LMCOs showed similar formal potentials, lower than those reported previously for laccases from white-rot fungi. Proteomic analysis of both proteins revealed their similarity with other well-characterized laccases from Pleurotus strains. Both LMCOs were applied to the oxidation of ferulic and sinapic acid, yielding oligomers with possible antioxidant activity.
Conclusions
Overall, the findings of the present work can offer new insights regarding the biochemistry and variability of low-redox potential laccases of fungal origin. Low-redox potential biocatalysts could offer higher substrate selectivity than their high-redox counterparts, and thus, they could be of applied value in the field of biocatalysis.
Funder
European Regional Development Fund
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献