Hydrophobic pore space constituted in macroporous ZIF-8 for lipase immobilization greatly improving lipase catalytic performance in biodiesel preparation

Author:

Hu Yingli,Dai Lingmei,Liu Dehua,Du WeiORCID

Abstract

Abstract Background During lipase-mediated biodiesel production, by-product glycerol adsorbing on immobilized lipase is a common trouble that hinders enzymatic catalytic activity in biodiesel production process. In this work, we built a hydrophobic pore space in macroporous ZIF-8 (named as M-ZIF-8) to accommodate lipase so that the generated glycerol would be hard to be adsorbed in such hydrophobic environment. The performance of the immobilized lipase in biodiesel production as well as its characteristics for glycerol adsorption were systematically studied. The PDMS (polydimethylsiloxane) CVD (chemical vapor deposition) method was utilized to get hydrophobic M-ZIF-8-PDMS with hydrophobic macropore space and then ANL (Aspergillus niger lipase) was immobilized on M-ZIF-8 and M-ZIF-8-PDMS by diffusion into the macropores. Results ANL@M-ZIF-8-PDMS presented higher enzymatic activity recovery and better biodiesel production catalytic performance compared to ANL@M-ZIF-8. Further study revealed that less glycerol adsorption was observed through the hydrophobic modification, which may attribute to the improved immobilized lipase performance during biodiesel production and ANL@M-ZIF-8-PDMS remained more than 96% activity after five cycles’ reuse. Through secondary structure and kinetic parameters’ analysis, we found that ANL@M-ZIF-8-PDMS had lower extent of protein aggregation and twice catalytic efficiency (Vmax/Km) than ANL@M-ZIF-8. Conclusions Hydrophobic pore space constituted in macroporous ZIF-8 for lipase immobilization greatly improved lipase catalytic performance in biodiesel preparation. The hydrophobic modification time showed negligible influence on the reusability of the immobilized lipase. This work broadened the prospect of immobilization of enzyme on MOFs with some inspiration.

Funder

Clean Energy Institute

Guangdong Province Introduction of Innovative R&D Team

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3