Fine-mapping and transcriptome analysis of a candidate gene controlling plant height in Brassica napus L.

Author:

Wang Xiaodong,Zheng Ming,Liu Hongfang,Zhang Liang,Chen Feng,Zhang Wei,Fan Shihang,Peng Menlu,Hu Maolong,Wang Hanzhong,Zhang Jiefu,Hua Wei

Abstract

Abstract Background Brassica napus provides approximately 13–16% of global vegetable oil for human consumption and biodiesel production. Plant height (PH) is a key trait that affects plant architecture, seed yield and harvest index. However, the genetic mechanism of PH in B. napus is poorly understood. Results A dwarf mutant df59 was isolated from a large-scale screening of an ethyl methanesulphonate-mutagenized rapeseed variety Ningyou 18. A genetic analysis showed that the dwarfism phenotype was controlled by one semi-dominant gene, which was mapped on C9 chromosome by quantitative trait loci sequencing analysis and designated as BnaDwf.C9. To fine-map BnaDwf.C9, two F2 populations were constructed from crosses between conventional rapeseed cultivars (Zhongshuang 11 and Holly) and df59. BnaDwf.C9 was fine-mapped to the region between single-nucleotide polymorphism (SNP) markers M14 and M4, corresponding to a 120.87-kb interval of the B. napus ‘Darmor-bzh’ genome. Within this interval, seven, eight and nine annotated or predicted genes were identified in “Darmor-bzh”, “Ningyou 7” and “Zhongshuang 11” reference genomes, respectively. In addition, a comparative transcriptome analysis was performed using stem tips from Ningyou 18 and df59 at the stem elongation stage. In total, 3995 differentially expressed genes (DEGs) were identified. Among them, 118 DEGs were clustered in plant hormone-related signal transduction pathways, including 81 DEGs were enriched in auxin signal transduction. Combining the results of fine-mapping and transcriptome analyses, BnaC09g20450D was considered a candidate gene for BnaDwf.C9, which contains a SNP that co-segregated in 4746 individuals. Finally, a PCR-based marker was developed based on the SNP in BnaC09g20450D. Conclusions The combination of quantitative trait loci sequencing, fine-mapping and genome-wide transcriptomic analysis revealed one candidate gene located within the confidence interval of 120.87-kb region. This study provides a new genetic resource for semi-dwarf breeding and new insights into understanding the genetic architecture of PH in B. napus.

Funder

National Natural Science Foundation of China

Earmarked Fund for China Agriculture Research System

Jiangsu Agricultural Science and Technology Innovation Fund

Postdoctoral Research Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

Reference68 articles.

1. Weiss EA. Oilseed crops. London: Blackwell Publishing Limited; 2000.

2. Pullen J, Saeed K. Investigation of the factors affecting the progress of base-catalyzed transesterification of rapeseed oil to biodiesel FAME. Fuel Process Technol. 2015;130:127–35.

3. Fan C, Tian J, Hu Z, Wang Y, Lv H, Ge Y, Wei X, Deng X, Zhang L, Yang W. Advances of oilseed rape breeding (in Chinese with an English abstract). J Plant Genet Resour. 2018;19(3):447–54.

4. Zhang B, Ma Y, Geng W, Cui J, Mu K, Hu L. Assessment of rape straw resources for biomass energy production in China (in Chinese with an English abstract). Renew Energy Resour. 2017;35(1):126–34.

5. Islam N, Evans EJ. Influence of lodging and nitrogen rate on the yield and yield attributes of oilseed rape (Brassica napus L.). Theor Appl Genet. 1994;88(5):530–4.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3