Metabolic engineering of Escherichia coli for direct production of vitamin C from D-glucose

Author:

Tian Yong-Sheng,Deng Yong-Dong,Zhang Wen-Hui,Yu-Wang ,Xu Jing,Gao Jian-Jie,Bo-Wang ,Fu Xiao-Yan,Han Hong-Juan,Li Zhen-Jun,Wang Li-Juan,Peng Ri-He,Yao Quan-Hong

Abstract

Abstract Background Production of vitamin C has been traditionally based on the Reichstein process and the two-step process. However, the two processes share a common disadvantage: vitamin C cannot be directly synthesized from D-glucose. Therefore, significant effort has been made to develop a one-step vitamin C fermentation process. While, 2-KLG, not vitamin C, is synthesized from nearly all current one-step fermentation processes. Vitamin C is naturally synthesized from glucose in Arabidopsis thaliana via a ten-step reaction pathway that is encoded by ten genes. The main objective of this study was to directly produce vitamin C from D-glucose in Escherichia coli by expression of the genes from the A. thaliana vitamin C biosynthetic pathway. Results Therefore, the ten genes of whole vitamin C synthesis pathway of A. thaliana were chemically synthesized, and an engineered strain harboring these genes was constructed in this study. The direct production of vitamin C from D-glucose based on one-step fermentation was achieved using this engineered strain and at least 1.53 mg/L vitamin C was produced in shaking flasks. Conclusions The study demonstrates the feasibility of one-step fermentation for the production of vitamin C from D-glucose. Importantly, the one-step process has significant advantages compared with the currently used fermentation process: it can save multiple physical and chemical steps needed to convert D-glucose to D-sorbitol; it also does not involve the associated down-streaming steps required to convert 2-KLG into vitamin C.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3