Upgrading dilute ethanol to odd-chain carboxylic acids by a synthetic co-culture of Anaerotignum neopropionicum and Clostridium kluyveri

Author:

Parera Olm Ivette,Sousa Diana Z.

Abstract

Abstract Background Dilute ethanol streams generated during fermentation of biomass or syngas can be used as feedstocks for the production of higher value products. In this study, we describe a novel synthetic microbial co-culture that can effectively upgrade dilute ethanol streams to odd-chain carboxylic acids (OCCAs), specifically valerate and heptanoate. The co-culture consists of two strict anaerobic microorganisms: Anaerotignum neopropionicum, a propionigenic bacterium that ferments ethanol, and Clostridium kluyveri, well-known for its chain-elongating metabolism. In this co-culture, A. neopropionicum grows on ethanol and CO2 producing propionate and acetate, which are then utilised by C. kluyveri for chain elongation with ethanol as the electron donor. Results A co-culture of A. neopropionicum and C. kluyveri was established in serum bottles with 50 mM ethanol, leading to the production of valerate (5.4 ± 0.1 mM) as main product of ethanol-driven chain elongation. In a continuous bioreactor supplied with 3.1 g ethanol L−1 d−1, the co-culture exhibited high ethanol conversion (96.6%) and produced 25% (mol/mol) valerate, with a steady-state concentration of 8.5 mM and a rate of 5.7 mmol L−1 d−1. In addition, up to 6.5 mM heptanoate was produced at a rate of 2.9 mmol L−1 d−1. Batch experiments were also conducted to study the individual growth of the two strains on ethanol. A. neopropionicum showed the highest growth rate when cultured with 50 mM ethanol (μmax = 0.103 ± 0.003 h−1) and tolerated ethanol concentrations of up to 300 mM. Cultivation experiments with C. kluyveri showed that propionate and acetate were used simultaneously for chain elongation. However, growth on propionate alone (50 mM and 100 mM) led to a 1.8-fold reduction in growth rate compared to growth on acetate. Our results also revealed sub-optimal substrate use by C. kluyveri during odd-chain elongation, where excessive ethanol was oxidised to acetate. Conclusions This study highlights the potential of synthetic co-cultivation in chain elongation processes to target the production of OCCAs. Furthermore, our findings shed light on to the metabolism of odd-chain elongation by C. kluyveri.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3