Author:
Ma Ruijuan,Zhang Zhen,Fang Hong,Liu Xinyu,Ho Shih-Hsin,Xie Youping,Chen Jianfeng
Abstract
AbstractBackgroundChlorella sorokinianaFZU60 is a promising lutein producing microalga. A mixotrophy/photoautotrophy two-stage strategy can achieve high biomass concentration at stage 1 and high lutein content at stage 2, leading to excellent lutein production efficiency inC. sorokinianaFZU60. However, the underlying molecular mechanisms are still unclear, restraining the further improvement of lutein production.ResultsIn this study, physiological and biochemical analysis revealed that photochemical parameters (Fv/Fm and NPQ) and photosynthetic pigments contents increased during the shift from mixotrophy to photoautotrophy, indicating that photosynthesis and photoprotection enhanced. Furthermore, transcriptomic analysis revealed that the glyoxylate cycle and TCA cycle were suppressed after the shift to photoautotrophy, leading to a decreased cell growth rate. However, the gene expression levels of photosynthesis, CO2fixation, autophagy, and lutein biosynthesis were upregulated at the photoautotrophy stage, demonstrating that microalgal cells could obtain more precursor to synthesize lutein for enhancing photosynthesis and reducing reactive oxygen species.ConclusionsThe findings help to elucidate the molecular mechanisms for high lutein production efficiency ofC. sorokinianaFZU60 under the mixotrophy/photoautotrophy strategy, identify key functional genes responsible for lutein biosynthesis, and shed light on further improvement of lutein production by genetic or metabolic engineering in future studies.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian Province, China
Scientific research project of Fuzhou Institute of Oceanography, China
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献