Abstract
Abstract
Background
The development of biorefinery systems that use lignocellulosic biomass as a renewable carbon source to produce fuels and chemicals is attracting increasing attention. The process cost of enzymatic saccharification of biomass is a major challenge for commercialization. To decrease this cost, researchers have proposed on-site solid-state fermentation (SSF). This study investigated the feasibility of using Aspergillus oryzae as a host microorganism for SSF recombinant enzyme production with ammonia-treated rice straw as model biomass. Eight A. oryzae strains were tested, all of which are used in the food industry. We evaluated the effects of acetic acid, a fermentation inhibitor. We also developed a platform strain for targeted recombinant enzyme production by gene engineering technologies.
Results
The SSF validation test showed variation in the visibility of mycelium growth and secreted protein in all eight A. oryzae strains. The strains used to produce shoyu and miso grew better under test conditions. The ammonia-treated rice straw contained noticeable amounts of acetic acid. This acetic acid enhanced the protein production by A. oryzae in a liquid-state fermentation test. The newly developed platform strain successfully secreted three foreign saccharifying enzymes.
Conclusions
A. oryzae is a promising candidate as a host microorganism for on-site SSF recombinant enzyme production, which bodes well for the future development of a more cost-efficient saccharifying enzyme production system.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference82 articles.
1. Palmeros Parada M, Osseweijer P, Posada Duque JA. Sustainable biorefineries, an analysis of practices for incorporating sustainability in biorefinery design. Ind Crops Prod. 2017;106:105–23.
2. Davis R, Grundl N, Tao L, Biddy MJ, Tan ECD, Beckham GT, et al. Biochemical deconstruction and conversion of biomass to fuels and products via integrated biorefinery pathways. Technical report NREL/TP-5100-71949. 2018.
3. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83:1–11.
4. Matsumura Y, Minowa T, Yamamoto H. Amount, availability, and potential use of rice straw (agricultural residue) biomass as an energy resource in Japan. Biomass Bioenergy. 2005;29:347–54.
5. Sukumaran RK, Singhania RR, Mathew GM, Pandey A. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy. 2009;34:421–4.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献