Abstract
Abstract
Background
Cumulative reported evidence has indicated that renewable feedstocks are a promising alternative source to fossil platforms for the production of fuels and chemicals. In that regard, the development of new, highly active, selective, and easy to recover and reuse catalysts for biomass conversions is urgently needed. The combination of enzymatic and inorganic heterogeneous catalysis generates an unprecedented platform that combines the advantages of both, the catalytic efficiency and selectivity of enzymes with the ordered structure, high porosity, mechanical, thermal and chemical resistance of mesoporous materials to obtain enzymatic heterogeneous catalysts. Enzymatic mineralization with an organic silicon precursor (biosilicification) is a promising and emerging approach for the generation of solid hybrid biocatalysts with exceptional stability under severe use conditions. Herein, we assessed the putative advantages of the biosilicification technology for developing an improved efficient and stable biocatalyst for sustainable biofuel production.
Results
A series of solid enzymatic catalysts denominated LOBE (low ordered biosilicified enzyme) were synthesized from Pseudomonas fluorescens lipase and tetraethyl orthosilicate. The microscopic structure and physicochemical properties characterization revealed that the enzyme formed aggregates that were contained in the heart of silicon-covered micelles, providing active sites with the ability to process different raw materials (commercial sunflower and soybean oils, Jatropha excisa oil, waste frying oil, acid oil from soybean soapstock, and pork fat) to produce first- and second-generation biodiesel. Ester content ranged from 81 to 93% wt depending on the raw material used for biodiesel synthesis.
Conclusions
A heterogeneous enzymatic biocatalyst, LOBE4, for efficient biodiesel production was successfully developed in a single-step synthesis reaction using biosilicification technology. LOBE4 showed to be highly efficient in converting refined, non-edible and residual oils (with high water and free fatty acid contents) and ethanol into biodiesel. Thus, LOBE4 emerges as a promising tool to produce second-generation biofuels, with significant implications for establishing a circular economy and reducing the carbon footprint.
Funder
Fondo para la Investigación Científica y Tecnológica
Consejo Nacional de Investigaciones Científicas y Técnicas
Universidad Tecnológica Nacional
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference68 articles.
1. Luque R, Campelo JM, Clark JH. Introduction: an overview of biofuels and production technologies. In: Luque R, Campelo J, Clark JH, editors. Handb Biofuels Prod. 1st ed. Sawston: Woodhead Publishing Limited; 2011. p. 3–12.
2. Sánchez Faba EM, Ferrero GO, Dias JM, Eimer GA. Alternative raw materials to produce biodiesel through alkaline heterogeneous catalysis. Catalysts. 2019;9:690–704.
3. Venkateswarulu TC, Raviteja CV, Prabhaker KV, Babu DJ, Ranganadha Reddy A, Indira M, et al. Review on methods of transesterification of oils and fats in bio-diesel formation. Int J ChemTech Res. 2014;6:2568–76.
4. Dias JM, Alvim-Ferraz MCMH, Almeida MF, Méndez Díaz JD, Sánchez Polo M, Rivera UJ. Biodiesel production using calcium manganese oxide as catalyst and different raw materials. Energy Convers Manag Pergamon. 2013;65:647–53.
5. Sheldon RA, Woodley JM. Role of biocatalysis in sustainable chemistry. Chem Rev. 2018;118:801–38.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献