Author:
Farokhnia Ali,Jokar Seyyed Mohammad,Parvasi Payam,Kim Albert S.
Abstract
AbstractBioenergy plays a significant role in the green transition. In this work, the conversion of methanol and mutton bone fat oil (as a low-cost feedstock) for bioenergy production was studied. The five-level, three-factor response surface methodology (RSM) was used to optimize the transesterification reaction conditions for produced biodiesel. Twenty ultrasonic-assisted experiments at the frequency of 25 kHz were conducted to investigate the effects of methanol/oil molar ratio (M/O) and concentrations of KOH and NaOH as catalysts on biodiesel yield. A second-order polynomial equation was developed by fitting the RSM experimental data using Design-Expert software. Results showed that the optimum biodiesel yield of 90.087% could be achieved by the KOH catalyst with 2.5 wt% concentration and 15:1 M/O during 3 h of the reaction. Furthermore, the biofuel analyses showed that methanol and mutton bone fat oil can be used as a proper feedstock for biofuel production. In the following, a membrane filtration package system is proposed and modeled. The reaction kinetics was determined based on experimental data. The results of the mathematical modeling showed the reaction time appears to be 6 times shorter in a membrane setup (30 min). Consequently, membrane application is highly recommended for biodiesel production from mutton bone fat oil.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献