Characterization of an efficient N-oxygenase from Saccharothrix sp. and its application in the synthesis of azomycin

Author:

Fan Chuanle,Zhou Fang,Huang Wei,Xue Yi,Xu Chao,Zhang Rubing,Xian Mo,Feng Xinjun

Abstract

Abstract Background The nitro group constitutes a significant functional moiety within numerous valuable substances, such as nitroimidazoles, a class of antimicrobial drugs exhibiting broad spectrum activity. Conventional chemical methods for synthesizing nitro compounds suffer from harsh conditions, multiple steps, and environmental issues. Biocatalysis has emerged as a promising alternative to overcome these drawbacks, with certain enzymes capable of catalyzing nitro group formation gradually being discovered in nature. Nevertheless, the practical application is hindered by the restricted diversity and low catalytic activity exhibited by the reported nitrifying enzymes. Results A novel N-oxygenase SaRohS harboring higher catalytic capability of transformation 2-aminoimidazole to azomycin was characterized from Saccharothrix sp. Phylogenetic tree analysis revealed that SaRohS belongs to the heme-oxygenase-like diiron oxygenase (HDOs) family. SaRohS exhibited optimal activity at pH 5.5 and 25 ℃, respectively. The enzyme maintained relatively stable activity within the pH range of 4.5 to 6.5 and the temperature range of 20 ℃ to 35 ℃. Following sequence alignment and structural analysis, several promising amino acid residues were meticulously chosen for catalytic performance evaluation. Site-directed mutations showed that threonine 75 was essential for the catalytic activity. The dual mutant enzyme G95A/K115T exhibited the highest catalytic efficiency, which was approximately 5.8-fold higher than that of the wild-type and 22.3-fold higher than that of the reported N-oxygenase KaRohS from Kitasatospora azatica. The underlying catalytic mechanism was investigated through molecular docking and molecular dynamics. Finally, whole-cell biocatalysis was performed and 2-aminoimidazole could be effectively converted into azomycin with a reaction conversion rate of 42% within 14 h. Conclusions An efficient N-oxygenase that catalyzes 2-aminoimidazole to azomycin was screened form Saccharothrix sp., its phylogenetics and enzymatic properties were analyzed. Through site-directed mutation, enhancements in catalytic competence were achieved, and the molecular basis underlying the enhanced enzymatic activity of the mutants was revealed via molecular docking and dynamic simulation. Furthermore, the application potential of this enzyme was assessed through whole cell biocatalysis, demonstrating it as a promising alternative method for azomycin production. Graphical Abstract

Funder

Youth Innovation Promotion Association at the Chinese Academy of Sciences

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3