Author:
Fan Chuanle,Zhou Fang,Huang Wei,Xue Yi,Xu Chao,Zhang Rubing,Xian Mo,Feng Xinjun
Abstract
Abstract
Background
The nitro group constitutes a significant functional moiety within numerous valuable substances, such as nitroimidazoles, a class of antimicrobial drugs exhibiting broad spectrum activity. Conventional chemical methods for synthesizing nitro compounds suffer from harsh conditions, multiple steps, and environmental issues. Biocatalysis has emerged as a promising alternative to overcome these drawbacks, with certain enzymes capable of catalyzing nitro group formation gradually being discovered in nature. Nevertheless, the practical application is hindered by the restricted diversity and low catalytic activity exhibited by the reported nitrifying enzymes.
Results
A novel N-oxygenase SaRohS harboring higher catalytic capability of transformation 2-aminoimidazole to azomycin was characterized from Saccharothrix sp. Phylogenetic tree analysis revealed that SaRohS belongs to the heme-oxygenase-like diiron oxygenase (HDOs) family. SaRohS exhibited optimal activity at pH 5.5 and 25 ℃, respectively. The enzyme maintained relatively stable activity within the pH range of 4.5 to 6.5 and the temperature range of 20 ℃ to 35 ℃. Following sequence alignment and structural analysis, several promising amino acid residues were meticulously chosen for catalytic performance evaluation. Site-directed mutations showed that threonine 75 was essential for the catalytic activity. The dual mutant enzyme G95A/K115T exhibited the highest catalytic efficiency, which was approximately 5.8-fold higher than that of the wild-type and 22.3-fold higher than that of the reported N-oxygenase KaRohS from Kitasatospora azatica. The underlying catalytic mechanism was investigated through molecular docking and molecular dynamics. Finally, whole-cell biocatalysis was performed and 2-aminoimidazole could be effectively converted into azomycin with a reaction conversion rate of 42% within 14 h.
Conclusions
An efficient N-oxygenase that catalyzes 2-aminoimidazole to azomycin was screened form Saccharothrix sp., its phylogenetics and enzymatic properties were analyzed. Through site-directed mutation, enhancements in catalytic competence were achieved, and the molecular basis underlying the enhanced enzymatic activity of the mutants was revealed via molecular docking and dynamic simulation. Furthermore, the application potential of this enzyme was assessed through whole cell biocatalysis, demonstrating it as a promising alternative method for azomycin production.
Graphical Abstract
Funder
Youth Innovation Promotion Association at the Chinese Academy of Sciences
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology