Effect of integrated treatment on enhancing the enzymatic hydrolysis of cocksfoot grass and the structural characteristics of co-produced hemicelluloses

Author:

Sun Shao-Chao,Sun Dan,Cao Xue-Fei

Abstract

Abstract Background Cocksfoot grass (Dactylis glomerata L.) with high biomass yield and rich cellulose can be used to produce bioethanol as fuel additive. In view of this, ultrasonic and hydrothermal pretreatments followed by successive alkali extractions were assembled into an integrated biorefinery process applied on cocksfoot grass to improve its enzymatic hydrolysis. In this work, the effects of ultrasonic and hydrothermal pretreatments followed by sequential alkali extractions on the enzymatic hydrolysis of cocksfoot grass were investigated. In addition, since large amount of hemicelluloses were released during the hydrothermal pretreatment and alkali extraction process, the yields, structural characteristics and differentials of water- and alkali-soluble hemicellulosic fractions isolated from different treatments were also comparatively explored. Results The integrated treatment significantly removed amorphous hemicelluloses and lignin, resulting in increased crystallinity of the treated residues. A maximum saccharification rate of 95.1% was obtained from the cellulose-rich substrate after the integrated treatment. In addition, the considerable hemicelluloses (31.4% water-soluble hemicelluloses and 53.4% alkali-soluble hemicelluloses) were isolated during the integrated treatment. The released water-soluble hemicellulosic fractions were found to be more branched as compared with the alkali-soluble hemicellulosic fractions and all hemicellulosic fractions were mixed polysaccharides mainly composed of branched xylans and β-glucans. Conclusion The combination of ultrasonic and hydrothermal pretreatments followed by successive alkali extractions can dramatically increase the enzymatic saccharification rate of the substrates and produce considerable amounts of hemicelluloses. Detailed information about the enzymatic hydrolysis rates of the treated substrates and the structural characteristics of the co-produced hemicelluloses will help the synergistic utilization of cellulose and hemicellulose in cocksfoot grass.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3