Fusion transcription factors for strong, constitutive expression of cellulases and xylanases in Trichoderma reesei

Author:

Derntl ChristianORCID,Mach Robert L.,Mach-Aigner Astrid R.

Abstract

Abstract Background The filamentous ascomycete T. reesei is industrially used to produce cellulases and xylanases. Cost-effective production of cellulases is a bottleneck for biofuel production. Previously, different strain and process optimizations were deployed to enhance enzyme production rates. One approach is the overexpression of the main activator Xyr1 and a second is the construction of synthetic transcription factors. Notably, these genetic manipulations were introduced into strains bearing the wild-type xyr1 gene and locus. Results Here, we constructed a Xyr1-deficient strain expressing a non-functional truncated version of Xyr1. This strain was successfully used as platform strain for overexpression of Xyr1, which enhanced the cellulase and xylanase production rates under inducing conditions, with the exception of lactose—there the cellulase production was severely reduced. Further, we introduced fusion transcription factors consisting of the DNA-binding domain of Xyr1 and the transactivation domain of either Ypr1 or Ypr2 (regulators of the sorbicillinoid biosynthesis gene cluster). The fusion of Xyr1 and Ypr2 yielded a moderately transactivating transcription factor, whereas the fusion of Xyr1 and Ypr1 yielded a highly transactivating transcription factor that induced xylanases and cellulases nearly carbon source independently. Especially, high production levels of xylanases were achieved on glycerol. Conclusion During this study, we constructed a Xyr1-deficient strain that can be fully reconstituted, which makes it an ideal platform strain for Xyr1-related studies. The mere overexpression of Xyr1 turned out not to be a successful strategy for overall enhancement of the enzyme production rates. We gained new insights into the regulatory properties of transcription factors by constructing respective fusion proteins. The Xyr1–Ypr1-fusion transcription factor could induce xylanase production rates on glycerol to outstanding extents, and hence could be deployed in the future to utilize crude glycerol, the main co-product of the biodiesel production process.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3