Abstract
Abstract
Background
The filamentous ascomycete T. reesei is industrially used to produce cellulases and xylanases. Cost-effective production of cellulases is a bottleneck for biofuel production. Previously, different strain and process optimizations were deployed to enhance enzyme production rates. One approach is the overexpression of the main activator Xyr1 and a second is the construction of synthetic transcription factors. Notably, these genetic manipulations were introduced into strains bearing the wild-type xyr1 gene and locus.
Results
Here, we constructed a Xyr1-deficient strain expressing a non-functional truncated version of Xyr1. This strain was successfully used as platform strain for overexpression of Xyr1, which enhanced the cellulase and xylanase production rates under inducing conditions, with the exception of lactose—there the cellulase production was severely reduced. Further, we introduced fusion transcription factors consisting of the DNA-binding domain of Xyr1 and the transactivation domain of either Ypr1 or Ypr2 (regulators of the sorbicillinoid biosynthesis gene cluster). The fusion of Xyr1 and Ypr2 yielded a moderately transactivating transcription factor, whereas the fusion of Xyr1 and Ypr1 yielded a highly transactivating transcription factor that induced xylanases and cellulases nearly carbon source independently. Especially, high production levels of xylanases were achieved on glycerol.
Conclusion
During this study, we constructed a Xyr1-deficient strain that can be fully reconstituted, which makes it an ideal platform strain for Xyr1-related studies. The mere overexpression of Xyr1 turned out not to be a successful strategy for overall enhancement of the enzyme production rates. We gained new insights into the regulatory properties of transcription factors by constructing respective fusion proteins. The Xyr1–Ypr1-fusion transcription factor could induce xylanase production rates on glycerol to outstanding extents, and hence could be deployed in the future to utilize crude glycerol, the main co-product of the biodiesel production process.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献