Regulation of seed oil accumulation by lncRNAs in Brassica napus

Author:

Li Yuqing,Tan Zengdong,Zeng Chenghao,Xiao Mengying,Lin Shengli,Yao Wei,Li Qing,Guo Liang,Lu Shaoping

Abstract

Abstract Background Studies have indicated that long non-coding RNAs (lncRNAs) play important regulatory roles in many biological processes. However, the regulation of seed oil biosynthesis by lncRNAs remains largely unknown. Results We comprehensively identified and characterized the lncRNAs from seeds in three developing stages in two accessions of Brassica napus (B. napus), ZS11 (high oil content) and WH5557 (low oil content). Finally, 8094 expressed lncRNAs were identified. LncRNAs MSTRG.22563 and MSTRG.86004 were predicted to be related to seed oil accumulation. Experimental results show that the seed oil content is decreased by 3.1–3.9% in MSTRG.22563 overexpression plants, while increased about 2% in MSTRG.86004, compared to WT. Further study showed that most genes related to lipid metabolism had much lower expression, and the content of some metabolites in the processes of respiration and TCA (tricarboxylic acid) cycle was reduced in MSTRG.22563 transgenic seeds. The expression of genes involved in fatty acid synthesis and seed embryonic development (e.g., LEC1) was increased, but genes related to TAG assembly was decreased in MSTRG.86004 transgenic seeds. Conclusion Our results suggest that MSTRG.22563 might impact seed oil content by affecting the respiration and TCA cycle, while MSTRG.86004 plays a role in prolonging the seed developmental time to increase seed oil accumulation.

Funder

the National Key R&D Program of China

Key Research and Development Plan of Hubei Province

Hubei Hongshan Laboratory

HZAU-AGIS Cooperation Fund

Fundamental Research Funds for the Central Universities

Higher Education Discipline Innovation Project

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3