Abstract
AbstractPlant-biomass-based nanomaterials have attracted great interest recently for their potential to replace petroleum-sourced polymeric materials for sustained economic development. However, challenges associated with sustainable production of lignocellulosic nanoscale polymeric materials (NPMs) need to be addressed. Producing materials from lignocellulosic biomass is a value-added proposition compared with fuel-centric approach. This report focuses on recent progress made in understanding NPMs—specifically lignin nanoparticles (LNPs) and cellulosic nanomaterials (CNMs)—and their sustainable production. Special attention is focused on understanding key issues in nano-level deconstruction of cell walls and utilization of key properties of the resultant NPMs to allow flexibility in production to promote sustainability. Specifically, suitable processes for producing LNPs and their potential for scaled-up production, along with the resultant LNP properties and prospective applications, are discussed. In the case of CNMs, terminologies such as cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) used in the literature are examined. The term cellulose nano-whiskers (CNWs) is used here to describe a class of CNMs that has a morphology similar to CNCs but without specifying its crystallinity, because most applications of CNCs do not need its crystalline characteristic. Additionally, progress in enzymatic processing and drying of NPMs is also summarized. Finally, the report provides some perspective of future research that is likely to result in commercialization of plant-based NPMs.
Funder
Office of Energy Efficiency and Renewable Energy
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference251 articles.
1. Perlack RD, Stokes BJ: DOE. 2011. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. In., vol. DE-AC05–00R22725. Oak Ridge: Oakridge National Laboratory; 2011.
2. French AD, Bertoniere NR, Brown RM, Chanzy H, Gray D, Hattori K, Glasser W. Cellulose. In: Seidel A, editor. Kirk-Othmer Encyclopedia of Chemical Technology. 5th ed. New York: Wiley; 2004.
3. Zhu JY, Zhuang XS. Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining. Progr Energy Combust Sci. 2012;38(4):583–9.
4. Pettersen RC: The chemical composition of wood. In: The Chemistry of Solid Wood Advances in Chemistry Series 207. Edited by Rowell RM. Washington D.C.: American Chemical Society; 1984: 115–116.
5. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY. Coordinated development of leading biomass pretreatment technologies. Bioresour Technol. 2005;96(18):1959–66.
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献