Green construction and release mechanism of lignin-based double-layer coated urea

Author:

Chen Xiaojuan,Yang Huchen,Zhang Lidan,Li Zhongli,Xue Yunna,Wang Rongfeng,Fan Xiaolin,Sun Shaolong

Abstract

Abstract Background Lignin played an important role in the establishment of coated fertilizers coating material as a substitute for petrochemical raw materials. However, so far, the lignin-based coated fertilizers was limited in only the poor slow-release performance. To achieve good slow-release performance of lignin-based coated fertilizers, hydrophilic of lignin need to be resolved to establish an green and better controllable lignin-based coated fertilizers. Results In the study, a novel green double layer coating with lignin-based polyurethane (LPU) as the inner coating and epoxy resin (EP) as the outer coating was effectively constructed for coated urea. Fourier transform infrared spectra confirmed that lignin and polycaprolactone diol successfully reacted with Hexamethylene diisocyanate. The loss weight and water contact angle (WCA, 75.6–63.6°) of the LPUs decreased with the increased lignin content. The average particle hardness of the lignin-based double-layer coated urea (LDCU) first increased from 58.1 N (lignin of 30%) to 67.0 N (lignin of 60%), but then decreased to 62.3 N (lignin of 70%). The release longevity of the coated urea was closely related to the preparation parameters of the coating material. The optimal cumulative nutrient release rate (79.4%) of LDCU was obtained (lignin of 50%, –CNO/–OH molar ratios of 1.15, EP of 35%, and coating ratio of 5%). The aggregates of hydrone on the LDCU caused the dissolution and swelling of nutrients, and then the diffusion of nutrients through the concentration gradient. Conclusions A though the nutrient release of the LDCUs was affected by many factors, the successful development of the LDCUs will help improve the rapid development of the coated fertilizer industry.

Funder

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3