Author:
Cazzaniga Stefano,Perozeni Federico,Baier Thomas,Ballottari Matteo
Abstract
Abstract
Background
Astaxanthin is a highly valuable ketocarotenoid with strong antioxidative activity and is natively accumulated upon environmental stress exposure in selected microorganisms. Green microalgae are photosynthetic, unicellular organisms cultivated in artificial systems to produce biomass and industrially relevant bioproducts. While light is required for photosynthesis, fueling carbon fixation processes, application of high irradiance causes photoinhibition and limits biomass productivity.
Results
Here, we demonstrate that engineered astaxanthin accumulation in the green alga Chlamydomonas reinhardtii conferred high light tolerance, reduced photoinhibition and improved biomass productivity at high irradiances, likely due to strong antioxidant properties of constitutively accumulating astaxanthin. In competitive co-cultivation experiments, astaxanthin-rich Chlamydomonas reinhardtii outcompeted its corresponding parental background strain and even the fast-growing green alga Chlorella vulgaris.
Conclusions
Metabolic engineering inducing astaxanthin and ketocarotenoids accumulation caused improved high light tolerance and increased biomass productivity in the model species for microalgae Chlamydomonas reinhardtii. Thus, engineering microalgal pigment composition represents a powerful strategy to improve biomass productivities in customized photobioreactors setups. Moreover, engineered astaxanthin accumulation in selected strains could be proposed as a novel strategy to outperform growth of other competing microalgal strains.
Funder
H2020 European Research Council
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology
Reference68 articles.
1. Stephenson PG, Moore CM, Terry MJ, Zubkov MV, Bibby TS. Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol. 2011;29(12):615–23.
2. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. BiotechnolBioeng. 2009;102(1):100–12.
3. Borowitzka MA. High-value products from microalgae—their development and commercialisation. J Appl Phycol. 2013;25(3):743–56.
4. Quinn JC, Davis R. The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour Technol. 2015;184:444–52.
5. Nelson N, Ben SA. The complex architecture of oxygenic photosynthesis. Nature. 2004;5:1–12.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献