Abstract
Abstract
Background
Sorghum bicolor (L.) is an important bioenergy source. The stems of sweet sorghum function as carbon sinks and accumulate large amounts of sugars and lignocellulosic biomass and considerable amounts of starch, therefore providing a model of carbon allocation and accumulation for other bioenergy crops. While omics data sets for sugar accumulation have been reported in different genotypes, the common features of primary metabolism in sweet genotypes remain unclear. To obtain a cohesive and comparative picture of carbohydrate metabolism between sorghum genotypes, we compared the phenotypes and transcriptome dynamics of sugar-accumulating internodes among three different sweet genotypes (Della, Rio, and SIL-05) and two non-sweet genotypes (BTx406 and R9188).
Results
Field experiments showed that Della and Rio had similar dynamics and internode patterns of sugar concentration, albeit distinct other phenotypes. Interestingly, cellulose synthases for primary cell wall and key genes in starch synthesis and degradation were coordinately upregulated in sweet genotypes. Sweet sorghums maintained active monolignol biosynthesis compared to the non-sweet genotypes. Comparative RNA-seq results support the role of candidate Tonoplast Sugar Transporter gene (TST), but not the Sugars Will Eventually be Exported Transporter genes (SWEETs) in the different sugar accumulations between sweet and non-sweet genotypes.
Conclusions
Comparisons of the expression dynamics of carbon metabolic genes across the RNA-seq data sets identify several candidate genes with contrasting expression patterns between sweet and non-sweet sorghum lines, including genes required for cellulose and monolignol synthesis (CesA, PTAL, and CCR), starch metabolism (AGPase, SS, SBE, and G6P-translocator SbGPT2), and sucrose metabolism and transport (TPP and TST2). The common transcriptome features of primary metabolism identified here suggest the metabolic networks contributing to carbon sink strength in sorghum internodes, prioritize the candidate genes for manipulating carbon allocation with bioenergy purposes, and provide a comparative and cohesive picture of the complexity of carbon sink strength in sorghum stem.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference128 articles.
1. Lemonie R, Camera S, Atanassova R, Dedaldechamp F, AllaRio T, Pourtau N, Bonnemain J, et al. Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci. 2013;4:272.
2. Wardlaw IE. The control of carbon partitioning in plants. New Phytol. 1990;116:341–81.
3. Paul M, Foyer C. Sink regulation of photosynthesis. J Exp Bot. 2001;52(360):1383–400.
4. Ho L. Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength. Annu Rev Plant Physiol Plant Mol Biol. 1988;39:355–78.
5. OsoRio S, Ruan YL, Fernie A. An update on source-to-sink carbon partitioning in tomato. Front Plant Sci. 2014;5:516.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献