Formate-driven H2 production by whole cells of Thermoanaerobacter kivui

Author:

Burger Yvonne,Schwarz Fabian M.,Müller Volker

Abstract

Abstract Background In times of global warming there is an urgent need to replace fossil fuel-based energy vectors by less carbon dioxide (CO2)-emitting alternatives. One attractive option is the use of molecular hydrogen (H2) since its combustion emits water (H2O) and not CO2. Therefore, H2 is regarded as a non-polluting fuel. The ways to produce H2 can be diverse, but steam reformation of conventional fossil fuel sources is still the main producer of H2 gas up to date. Biohydrogen production via microbes could be an alternative, environmentally friendly and renewable way of future H2 production, especially when the flexible and inexpensive C1 compound formate is used as substrate. Results In this study, the versatile compound formate was used as substrate to drive H2 production by whole cells of the thermophilic acetogenic bacterium Thermoanaerobacter kivui which harbors a highly active hydrogen-dependent CO2 reductase (HDCR) to oxidize formate to H2 and CO2 and vice versa. Under optimized reaction conditions, T. kivui cells demonstrated the highest H2 production rates (qH2 = 685 mmol g−1 h−1) which were so far reported in the literature for wild-type organisms. Additionally, high yields (Y(H2/formate)) of 0.86 mol mol−1 and a hydrogen evolution rate (HER) of 999 mmol L−1 h−1 were observed. Finally, stirred-tank bioreactor experiments demonstrated the upscaling feasibility of the applied whole cell system and indicated the importance of pH control for the reaction of formate-driven H2 production. Conclusions The thermophilic acetogenic bacterium T. kivui is an efficient biocatalyst for the oxidation of formate to H2 (and CO2). The existing genetic tool box of acetogenic bacteria bears further potential to optimize biohydrogen production in future and to contribute to a future sustainable formate/H2 bio-economy.

Funder

H2020 European Research Council

Johann Wolfgang Goethe-Universität, Frankfurt am Main

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3