Carbon-wise utilization of lignin-related compounds by synergistically employing anaerobic and aerobic bacteria

Author:

Meriläinen Ella,Efimova Elena,Santala Ville,Santala Suvi

Abstract

Abstract Background Lignin is a highly abundant but strongly underutilized natural resource that could serve as a sustainable feedstock for producing chemicals by microbial cell factories. Because of the heterogeneous nature of the lignin feedstocks, the biological upgrading of lignin relying on the metabolic routes of aerobic bacteria is currently considered as the most promising approach. However, the limited substrate range and the inefficient catabolism of the production hosts hinder the upgrading of lignin-related aromatics. Particularly, the aerobic O-demethylation of the methoxyl groups in aromatic substrates is energy-limited, inhibits growth, and results in carbon loss in the form of CO2. Results In this study, we present a novel approach for carbon-wise utilization of lignin-related aromatics by the integration of anaerobic and aerobic metabolisms. In practice, we employed an acetogenic bacterium Acetobacterium woodii for anaerobic O-demethylation of aromatic compounds, which distinctively differs from the aerobic O-demethylation; in the process, the carbon from the methoxyl groups is fixed together with CO2 to form acetate, while the aromatic ring remains unchanged. These accessible end-metabolites were then utilized by an aerobic bacterium Acinetobacter baylyi ADP1. By utilizing this cocultivation approach, we demonstrated an upgrading of guaiacol, an abundant but inaccessible substrate to most microbes, into a plastic precursor muconate, with a nearly equimolar yields (0.9 mol/mol in a small-scale cultivation and 1.0 mol/mol in a one-pot bioreactor cultivation). The process required only a minor genetic engineering, namely a single gene knock-out. Noticeably, by employing a metabolic integration of the two bacteria, it was possible to produce biomass and muconate by utilizing only CO2 and guaiacol as carbon sources. Conclusions By the novel approach, we were able to overcome the issues related to aerobic O-demethylation of methoxylated aromatic substrates and demonstrated carbon-wise conversion of lignin-related aromatics to products with yields unattainable by aerobic processes. This study highlights the power of synergistic integration of distinctive metabolic features of bacteria, thus unlocking new opportunities for harnessing microbial cocultures in upgrading challenging feedstocks.

Funder

Research Council of Finland

Novo Nordisk Fonden

Tampere University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3