Salicylic acid enhances cell growth, fatty acid and astaxanthin production in heterotrophic Chromochloris zofingiensis without reactive oxygen species elevation

Author:

Zhang Xinwei,Zhang Zhao,Peng Yanmei,Zhang Yushu,Li Qingyang,Sun Dongzhe

Abstract

Abstract Background The induction of lipid and astaxanthin accumulation in microalgae is often achieved through abiotic stress. However, this approach usually leads to oxidative stress, which results in relatively low growth rate. Phytohormones, as important small molecule signaling substances, not only affect the growth and metabolism of microalgae but also influence the intracellular reactive oxygen species level. This study aimed to screen phytohormones that could promote the fatty acids and astaxanthin yield of heterotrophic Chromochloris zofingiensis without causing oxidative damage, and further investigate the underlying mechanisms. Results In the present study, among all the selected phytohormones, the addition of exogenous salicylic acid (SA) could effectively promote cell growth along with the yield of total fatty acids (TFA) and astaxanthin in heterotrophic C. zofingiensis. Notably, the highest yields of TFA and astaxanthin were achieved at 100 μM SA, 43% and 97.2% higher compared with the control, respectively. Interestingly, the intracellular reactive oxygen species (ROS) levels, which are usually increased with elevated TFA content under abiotic stresses, were significantly decreased by SA treatment. Comparative transcriptome analysis unveiled significant alterations in overall carbon metabolism by SA. Specifically, the upregulation of fatty acid synthesis pathway, upregulation of β-carotene-4-ketolase (BKT) in carotenoid synthesis aligned with biochemical findings. Weighted gene co-expression network analysis highlighted ABC transporters and GTF2B-like transcription factor as potential key regulators. Conclusion This study found that salicylic acid can serve as an effective regulator to promote the celling growth and accumulation of fatty acids and astaxanthin in heterotrophic C. zofingiensis without ROS elevation, which provides a promising approach for heterotrophic production of TFA and astaxanthin without growth inhibition. Graphical Abstract

Funder

Science and Technology Project of Hebei Education Department

Post-graduate’s Innovation Fund Project of Hebei University

Science Foundation of Hebei Normal University

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3