Abstract
Abstract
Background
Methylacidiphilum sp. IT6 has been validated its C3 substrate assimilation pathway via acetol as a key intermediate using the PmoCAB3, a homolog of the particulate methane monooxygenase (pMMO). From the transcriptomic data, the contribution of PmoD of strain IT6 in acetone oxidation was questioned. Methylomonas sp. DH-1, a type I methanotroph containing pmo operon without the existence of its pmoD, has been deployed as a biocatalyst for the gas-to-liquid bioconversion of methane and propane to methanol and acetone. Thus, Methylomonas sp. DH-1 is a suitable host for investigation. The PmoD-expressed Methylomonas sp. DH-1 can also be deployed for acetol production, a well-known intermediate for various industrial applications. Microbial production of acetol is a sustainable approach attracted attention so far.
Results
In this study, bioinformatics analyses elucidated that novel protein PmoD is a C-terminal transmembrane–helix membrane with the proposed function as a transport protein. Furthermore, the whole-cell biocatalyst was constructed in Methylomonas sp. DH-1 by co-expression the PmoD of Methylacidiphilum sp. IT6 with the endogenous pMMO to enable acetone oxidation. Under optimal conditions, the maximum accumulation, and specific productivity of acetol were 18.291 mM (1.35 g/L) and 0.317 mmol/g cell/h, respectively. The results showed the first coupling activity of pMMO with a heterologous protein PmoD, validated the involvement of PmoD in acetone oxidation, and demonstrated an unprecedented production of acetol from acetone in type I methanotrophic biocatalyst. From the data achieved in batch cultivation conditions, an assimilation pathway of acetone via acetol as the key intermediate was also proposed.
Conclusion
Using bioinformatics tools, the protein PmoD has been elucidated as the membrane protein with the proposed function as a transport protein. Furthermore, results from the assays of PmoD-heteroexpressed Methylomonas sp. DH-1 as a whole-cell biocatalyst validated the coupling activity of PmoD with pMMO to convert acetone to acetol, which also unlocks the potential of this recombinant biocatalyst for acetol production. The proposed acetone-assimilated pathway in the recombinant Methylomonas sp. DH-1, once validated, can extend the metabolic flexibility of Methylomonas sp. DH-1.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Mohamad MH, Awang R, Yunus WM. A review of acetol: application and production. Am J Appl Sci. 2011;8(11):1135.
2. Soucaille P, Voelker F, Figge R, inventors; Metabolic Explorer SA, assignee. Metabolically engineered microorganism useful for the production of acetol. US patent US2010279369A1. 2010.
3. Zhu H, Yi X, Liu Y, Hu H, Wood TK, Zhang X. Production of acetol from glycerol using engineered Escherichia coli. Bioresour Technol. 2013;149:238–43.
4. Yao R, Liu Q, Hu H, Wood TK, Zhang X. Metabolic engineering of Escherichia coli to enhance acetol production from glycerol. Appl Microbiol Biotechnol. 2015;99(19):7945–52.
5. Yao R, Li J, Feng L, Zhang X, Hu H. 13C metabolic flux analysis-guided metabolic engineering of Escherichia coli for improved acetol production from glycerol. Biotechnol Biofuels. 2019;12(1):1–13.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献