Microbial fuel cell-assisted utilization of glycerol for succinate production by mutant of Actinobacillus succinogenes

Author:

Zheng Tianwen,Xu Bin,Ji Yaliang,Zhang Wenming,Xin Fengxue,Dong Weiliang,Wei Ping,Ma Jiangfeng,Jiang Min

Abstract

Abstract Background The global production of glycerol is increasing year by year since the demands of biodiesel is rising. It is benefit for high-yield succinate synthesis due to its high reducing property. A. succinogenes, a succinate-producing candidate, cannot grow on glycerol anaerobically, as it needs a terminal electron acceptor to maintain the balance of intracellular NADH and NAD+. Microbial fuel cell (MFC) has been widely used to release extra intracellular electrons. However, A. succinogenes is a non-electroactive strain which need the support of electron shuttle in MFC, and pervious research showed that acid-tolerant A. succinogenes has higher content of unsaturated fatty acids, which may be beneficial for the transmembrane transport of lipophilic electron shuttle. Results MFC-assisted succinate production was evaluated using neutral red as an electron shuttle to recover the glycerol utilization. First, an acid-tolerant mutant JF1315 was selected by atmospheric and room temperature plasma (ARTP) mutagenesis aiming to improve transmembrane transport of neutral red (NR). Additionally, MFC was established to increase the ratio of oxidized NR to reduced NR. By combining these two strategies, ability of JF1315 for glycerol utilization was significantly enhanced, and 23.92 g/L succinate was accumulated with a yield of 0.88 g/g from around 30 g/L initial glycerol, along with an output voltage above 300 mV. Conclusions A novel MFC-assisted system was established to improve glycerol utilization by A. succinogenes for succinate and electricity production, making this system as a platform for chemicals production and electrical supply simultaneously.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Key Science and Technology Project of Jiangsu Province

Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture of China

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

Reference26 articles.

1. Li Z, Yan JX, Sun JK, Xu P, Ma CQ, Gao C. Production of value-added chemicals from glycerol using in vitro enzymatic cascades. Commun Chem. 2018;1:1–7.

2. Anitha M, Kamarudin SK, Kofli NT. The potential of glycerol as a value-added commodity. Chem Eng J. 2016;295:119–30.

3. Stephanopoulos GN, Aristidou AA, Nielsen J. Metabolic engineering: Principles and methodologies. London: Academic Press; 1998.

4. Schindler BD, Joshi RV, Vieille C. Respiratory glycerol metabolism of Actinobacillus succinogenes 130Z for succinate production. J Ind Microbiol Biotechnol. 2014;41:1339–52.

5. Van Der Werf MJ, Guettler MV, Jain MK, Zeikus JG. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Arch Microbiol. 1997;167:332–342.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3