Abstract
Abstract
Background
As the most abundant polysaccharide in brown algae, alginate has become a promising economical material for bioethanol production. Recently, exo-type alginate lyases have received extensive attention because the unsaturated monosaccharides produced by their degradation of alginate can be easily converted into 4-deoxy-l-erythro-5-hexoseulose uronate (DEH), a promising material for bioethanol production and biorefinery systems.
Results
In this study, we cloned and characterized an exo-type polysaccharide lyase family 7 (PL7) alginate lyase VxAly7D from the marine bacterium Vibrio xiamenensis QY104. Recombinant VxAly7D was most active at 30 °C and exhibited 21%, 46% and 90% of its highest activity at 0, 10 and 20 °C, respectively. Compared with other exo-type alginate lyases, recombinant VxAly7D was shown to be a bifunctional alginate lyase with higher specific activity towards sodium alginate, polyG and polyM (462.4 ± 0.64, 357.37 ± 0.53 and 441.94 ± 2.46 U/mg, respectively). A total of 13 μg recombinant VxAly7D could convert 3 mg sodium alginate to unsaturated monosaccharides in 1 min with a yield of 37.6%, and the yield reached 95% in 1 h. In addition, the three-dimensional structure of VxAly7D was modelled using the crystal structure of AlyA5 from Zobellia galactanivorans DsijT as the template. The action mode and the end products of the W295A mutant revealed that Trp295 is a key amino acid residue responsible for the exolytic action mode of VxAly7D.
Conclusion
Overall, our results show that VxAly7D is a PL7 exo-type alginate lyase with high activity and a high conversion rate at low/moderate temperatures, which provides a useful enzymatic tool for the development of biofuel production from brown algae and enriches the understanding of the structure and functional relationships of polysaccharide lyases.
Funder
National Science and Technology Major Project for Significant New Drugs Development
Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology
National Key R&D Program of China
Natural Science Foundation of Shandong Province
National Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献