CAZyme prediction in ascomycetous yeast genomes guides discovery of novel xylanolytic species with diverse capacities for hemicellulose hydrolysis

Author:

Ravn Jonas L.,Engqvist Martin K. M.,Larsbrink Johan,Geijer CeciliaORCID

Abstract

Abstract Background Ascomycetous yeasts from the kingdom fungi inhabit every biome in nature. While filamentous fungi have been studied extensively regarding their enzymatic degradation of the complex polymers comprising lignocellulose, yeasts have been largely overlooked. As yeasts are key organisms used in industry, understanding their enzymatic strategies for biomass conversion is an important factor in developing new and more efficient cell factories. The aim of this study was to identify polysaccharide-degrading yeasts by mining CAZymes in 332 yeast genomes from the phylum Ascomycota. Selected CAZyme-rich yeasts were then characterized in more detail through growth and enzymatic activity assays. Results The CAZyme analysis revealed a large spread in the number of CAZyme-encoding genes in the ascomycetous yeast genomes. We identified a total of 217 predicted CAZyme families, including several CAZymes likely involved in degradation of plant polysaccharides. Growth characterization of 40 CAZyme-rich yeasts revealed no cellulolytic yeasts, but several species from the Trichomonascaceae and CUG-Ser1 clades were able to grow on xylan, mixed-linkage β-glucan and xyloglucan. Blastobotrys mokoenaii, Sugiyamaella lignohabitans, Spencermartinsiella europaea and several Scheffersomyces species displayed superior growth on xylan and well as high enzymatic activities. These species possess genes for several putative xylanolytic enzymes, including ones from the well-studied xylanase-containing glycoside hydrolase families GH10 and GH30, which appear to be attached to the cell surface. B. mokoenaii was the only species containing a GH11 xylanase, which was shown to be secreted. Surprisingly, no known xylanases were predicted in the xylanolytic species Wickerhamomyces canadensis, suggesting that this yeast possesses novel xylanases. In addition, by examining non-sequenced yeasts closely related to the xylanolytic yeasts, we were able to identify novel species with high xylanolytic capacities. Conclusions Our approach of combining high-throughput bioinformatic CAZyme-prediction with growth and enzyme characterization proved to be a powerful pipeline for discovery of novel xylan-degrading yeasts and enzymes. The identified yeasts display diverse profiles in terms of growth, enzymatic activities and xylan substrate preferences, pointing towards different strategies for degradation and utilization of xylan. Together, the results provide novel insights into how yeast degrade xylan, which can be used to improve cell factory design and industrial bioconversion processes.

Funder

Carl Tryggers Stiftelse för Vetenskaplig Forskning

Chalmers University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3