Enhancement of docosahexaenoic acid production by overexpression of ATP-citrate lyase and acetyl-CoA carboxylase in Schizochytrium sp.

Author:

Han Xiao,Zhao Zhunan,Wen Ying,Chen ZhiORCID

Abstract

Abstract Background Docosahexaenoic acid (DHA) is an important omega-3 long-chain polyunsaturated fatty acid that has a variety of physiological functions for infant development and human health. Although metabolic engineering was previously demonstrated to be a highly efficient way to rapidly increase lipid production, metabolic engineering has seldom been previously used to increase DHA accumulation in Schizochytrium spp. Results Here, a sensitive β-galactosidase reporter system was established to screen for strong promoters in Schizochytrium sp. Four constitutive promoters (EF-p, TEF-1p, ccg1p, and ubiquitinp) and one methanol-induced AOX1 promoter were characterized by the reporter system with the promoter activity ccg1p> TEF-1p > AOX1p (induced) > EF-p > ubiquitinp. With the strong constitutive promoter ccg1p, Schizochytrium ATP-citrate lyase (ACL) and acetyl-CoA carboxylase (ACC) were overexpressed in Schizochytrium sp. ATCC 20888. The cells were cultivated at 28 °C and 250 rpm for 120 h with glucose as the carbon source. Shake-flask fermentation results showed that the overexpression strains exhibited growth curves and biomass similar to those of the wild-type strain. The lipid contents of the wild-type strain and of the OACL, OACC, and OACL-ACC strains were 53.8, 68.8, 69.8, and 73.0%, respectively, and the lipid yields of the overexpression strains were increased by 21.9, 30.5, and 38.3%, respectively. DHA yields of the wild-type strain and of the corresponding overexpression strains were 4.3, 5.3, 6.1, and 6.4 g/L, i.e., DHA yields of the overexpression strains were increased by 23.3, 41.9, and 48.8%, respectively. Conclusions Acetyl-CoA and malonyl-CoA are precursors for fatty acid synthesis. ACL catalyzes the conversion of citrate in the cytoplasm into acetyl-CoA, and ACC catalyzes the synthesis of malonyl-CoA from acetyl-CoA. The results demonstrate that overexpression of ACL and ACC enhances lipid accumulation and DHA production in Schizochytrium sp.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3