Tunnel engineering to accelerate product release for better biomass-degrading abilities in lignocellulolytic enzymes

Author:

Lu Zhenghui,Li Xinzhi,Zhang Rui,Yi Li,Ma Yanhe,Zhang GuiminORCID

Abstract

Abstract Background For enzymes with buried active sites, transporting substrates/products ligands between active sites and bulk solvent via access tunnels is a key step in the catalytic cycle of these enzymes. Thus, tunnel engineering is becoming a powerful strategy to refine the catalytic properties of these enzymes. The tunnel-like structures have been described in enzymes catalyzing bulky substrates like glycosyl hydrolases, while it is still uncertain whether these structures involved in ligands exchange. Till so far, no studies have been reported on the application of tunnel engineering strategy for optimizing properties of enzymes catalyzing biopolymers. Results In this study, xylanase S7-xyl (PDB: 2UWF) with a deep active cleft was chosen as a study model to evaluate the functionalities of tunnel-like structures on the properties of biopolymer-degrading enzymes. Three tunnel-like structures in S7-xyl were identified and simultaneously reshaped through multi-sites saturated mutagenesis; the most advantageous mutant 254RL1 (V207N/Q238S/W241R) exhibited 340% increase in specific activity compared to S7-xyl. Deconvolution analysis revealed that all three mutations contributed synergistically to the improved activity of 254RL1. Enzymatic characterization showed that larger end products were released in 254RL1, while substrate binding and structural stability were not changed. Dissection of the structural alterations revealed that both the tun_1 and tun_2 in 254RL1 have larger bottleneck radius and shorter length than those of S7-xyl, suggesting that these tunnel-like structures may function as products transportation pathways. Attributed to the improved catalytic efficiency, 254RL1 represents a superior accessory enzyme to enhance the hydrolysis efficiency of cellulase towards different pretreated lignocellulose materials. In addition, tunnel engineering strategy was also successfully applied to improve the catalytic activities of three other xylanases including xylanase NG27-xyl from Bacillus sp. strain NG-27, TSAA1-xyl from Geobacillus sp. TSAA1 and N165-xyl from Bacillus sp. N16-5, with 80%, 20% and 170% increase in specific activity, respectively. Conclusions This study represents a pilot study of engineering and functional verification of tunnel-like structures in enzymes catalyzing biopolymer. The specific activities of four xylanases with buried active sites were successfully improved by tunnel engineering. It is highly likely that tunnel reshaping can be used to engineer better biomass-degrading abilities in other lignocellulolytic enzymes with buried active sites.

Funder

Hubei Technological Innovation Special Fund

2016 Wuhan Yellow Crane Talent (Science) Program

Natural Science Foundation of Hubei Province

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3