Author:
Yang Jie,Gao Chongfeng,Yang Xueqi,Su Yanfu,Shi Suan,Han Lujia
Abstract
Abstract
Background
To further optimize the mechanochemical pretreatment process, a combined wet alkaline mechanical pretreatment of corn stover was proposed with a short time and less chemical consumption at room temperature.
Results
The combined alkaline mechanical pretreatment significantly enhanced enzymatic hydrolysis resulting a highest glucose yield (YG) of 91.9% with 3% NaOH and ball milling (BM) for 10 min. At this optimal condition, 44.4% lignin was removed and major portion of cellulose was retained (86.6%). The prehydrolysate contained by-products such as monosaccharides, oligosaccharides, acetic acid, and lignin but no furfural and 5-HMF. The alkaline concentration showed a significant impact on glucose yield, while the BM time was less important. Quantitative correlation analysis showed that YG (%) = 0.68 × BM time (min) + 19.27 × NaOH concentration (%) + 13.71 (R2 = 0.85), YG = 6.35 × glucan content − 231.84 (R2 = 0.84), and YG = − 14.22 × lignin content + 282.70 (R2 = 0.87).
Conclusion
The combined wet alkaline mechanical pretreatment at room temperature had a boosting effect on the yield of enzymatic hydrolysis with short treatment time and less chemical consumption. The impact of the physical and chemical properties of corn stover pretreated with different BM times and/or different NaOH concentrations on the subsequent enzymatic hydrolysis was investigated, which would be beneficial to illustrate the effective mechanism of the mechanochemical pretreatment method.
Funder
National Natural Science Foundation of China
Agriculture Research System of China
Changjiang Scholars and Innovative Research Team in University of Education Ministry of China
Innovative Research Team of the Agriculture and Rural Affairs Ministry of China
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献