Construction of cascade circuits for dynamic temporal regulation and its application to PHB production

Author:

Li Xiaomeng,Qi Qingsheng,Liang Quanfeng

Abstract

Abstract Background To maximize the production capacity and yield of microbial cell factories, metabolic pathways are generally modified with dynamic regulatory strategies, which can effectively solve the problems of low biological yield, growth retardation and metabolic imbalance. However, the strategy of dynamic regulating multiple genes in different time and order is still not effectively solved. Based on the quorum-sensing (QS) system and the principle of cascade regulation, we studied the sequence and time interval of gene expression in metabolic pathways. Results We designed and constructed a self-induced dynamic temporal regulatory cascade circuit in Escherichia coli using the QS system and dual regulatory protein cascade and found that the time intervals of the cascade circuits based on the Tra, Las system and the Lux, Tra system reached 200 min and 150 min, respectively. Furthermore, a dynamic temporal regulatory cascade circuit library with time intervals ranging from 110 to 310 min was obtained based on this circuit using promoter engineering and ribosome binding site replacement, which can provide more selective synthetic biology universal components for metabolic applications. Finally, poly-β-hydroxybutyric acid (PHB) production was taken as an example to demonstrate the performance of the cascade circuit library. The content of PHB increased 1.5-fold. Moreover, circuits with different time intervals and different expression orders were found to have different potentials for application in PHB production, and the preferred time-interval circuit strain C2-max was identified by screening. Conclusions The self-induced dynamic temporal regulation cascade circuit library can enable the expression of target genes with sequential changes at different times, effectively solving the balance problem between cell growth and product synthesis in two-stage fermentation and expanding the application of dynamic regulatory strategies in the field of metabolic engineering.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3