Transcriptome analysis revealed the regulation of gibberellin and the establishment of photosynthetic system promote rapid seed germination and early growth of seedling in pearl millet

Author:

Wu Bingchao,Sun Min,Zhang Huan,Yang Dan,Lin Chuang,Khan Imran,Wang Xiaoshan,Zhang Xinquan,Nie Gang,Feng Guangyan,Yan Yanhong,Li Zhou,Peng Yan,Huang LinkaiORCID

Abstract

Abstract Background Seed germination is the most important stage for the formation of a new plant. This process starts when the dry seed begins to absorb water and ends when the radicle protrudes. The germination rate of seed from different species varies. The rapid germination of seed from species that grow on marginal land allows seedlings to compete with surrounding species, which is also the guarantee of normal plant development and high yield. Pearl millet is an important cereal crop that is used worldwide, and it can also be used to extract bioethanol. Previous germination experiments have shown that pearl millet has a fast seed germination rate, but the molecular mechanisms behind pearl millet are unclear. Therefore, this study explored the expression patterns of genes involved in pearl millet growth from the germination of dry seed to the early growth stages. Results Through the germination test and the measurement of the seedling radicle length, we found that pearl millet seed germinated after 24 h of swelling of the dry seed. Using transcriptome sequencing, we characterized the gene expression patterns of dry seed, water imbibed seed, germ and radicle, and found more differentially expressed genes (DEGs) in radicle than germ. Further analysis showed that different genome clusters function specifically at different tissues and time periods. Weighted gene co-expression network analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that many genes that positively regulate plant growth and development are highly enriched and expressed, especially the gibberellin signaling pathway, which can promote seed germination. We speculated that the activation of these key genes promotes the germination of pearl millet seed and the growth of seedlings. To verify this, we measured the content of gibberellin and found that the gibberellin content after seed imbibition rose sharply and remained at a high level. Conclusions In this study, we identified the key genes that participated in the regulation of seed germination and seedling growth. The activation of key genes in these pathways may contribute to the rapid germination and growth of seed and seedlings in pearl millet. These results provided new insight into accelerating the germination rate and seedling growth of species with slow germination.

Funder

Sichuan Province Research grant

Modern Agro-industry Technology Research System

Modern Agricultural Industry System Sichuan Forage Innovation Team

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3