Abstract
Abstract
Background
Cyanobacteria, a group of photosynthetic prokaryotes, are being increasingly explored for direct conversion of carbon dioxide to useful chemicals. However, efforts to engineer these photoautotrophs have resulted in low product titers. This may be ascribed to the bottlenecks in metabolic pathways, which need to be identified for rational engineering. We engineered the recently reported, fast-growing and robust cyanobacterium, Synechococcus elongatus PCC 11801 to produce succinate, an important platform chemical. Previously, engineering of the model cyanobacterium S. elongatus PCC 7942 has resulted in succinate titer of 0.43 g l−1 in 8 days.
Results
Building on the previous report, expression of α-ketoglutarate decarboxylase, succinate semialdehyde dehydrogenase and phosphoenolpyruvate carboxylase yielded a succinate titer of 0.6 g l−1 in 5 days suggesting that PCC 11801 is better suited as host for production. Profiling of the engineered strains for 57 intermediate metabolites, a number of enzymes and qualitative analysis of key transcripts revealed potential flux control points. Based on this, we evaluated the effects of overexpression of sedoheptulose-1,7-bisphosphatase, citrate synthase and succinate transporters and knockout of succinate dehydrogenase and glycogen synthase A. The final construct with seven genes overexpressed and two genes knocked out resulted in photoautotrophic production of 0.93 g l−1 succinate in 5 days.
Conclusion
While the fast-growing strain PCC 11801 yielded a much higher titer than the model strain, the efficient photoautotrophy of this novel isolate needs to be harnessed further for the production of desired chemicals. Engineered strains of S. elongatus PCC 11801 showed dramatic alterations in the levels of several metabolites suggesting far reaching effects of pathway engineering. Attempts to overexpress enzymes deemed to be flux controlling led to the emergence of other potential rate-limiting steps. Thus, this process of debottlenecking of the pathway needs to be repeated several times to obtain a significantly superior succinate titer.
Funder
Department of Biotechnology , Ministry of Science and Technology
Indo-US Science and Technology Forum
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference75 articles.
1. Bozell JJ, Petersen GR. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. 2010;12:539–54.
2. Werpy T, Petersen G. Top value added chemicals from biomass: volume i—results of screening for potential candidates from sugars and synthesis gas. 2004.
3. Cao Y, Zhang R, Sun C, Cheng T, Liu Y, Xian M. Fermentative succinate production: an emerging technology to replace the traditional petrochemical processes. Biomed Res Int. 2013;2013:723412.
4. Ahn JH, Jang YS, Lee SY. Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol. 2016;42:54–66.
5. Beauprez JJ, De Mey M, Soetaert WK. Microbial succinic acid production: natural versus metabolic engineered producers. Process Biochem. 2010;45:1103–14.
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献