High-throughput droplet microfluidics screening and genome sequencing analysis for improved amylase-producing Aspergillus oryzae

Author:

Li Qinghua,Lu Jinchang,Liu Jingya,Li Jianghua,Zhang GuoqiangORCID,Du Guocheng,Chen Jian

Abstract

Abstract Background The exceptional protein secretion capacity, intricate post-translational modification processes, and inherent safety features of A. oryzae make it a promising expression system. However, heterologous protein expression levels of existing A. oryzae species cannot meet the requirement for industrial-scale production. Therefore, establishing an efficient screening technology is significant for the development of the A. oryzae expression system. Results In this work, a high-throughput screening method suitable for A. oryzae has been established by combining the microfluidic system and flow cytometry. Its screening efficiency can reach 350 droplets per minute. The diameter of the microdroplet was enlarged to 290 µm to adapt to the polar growth of A. oryzae hyphae. Through enrichment and screening from approximately 450,000 droplets within 2 weeks, a high-producing strain with α-amylase increased by 6.6 times was successfully obtained. Furthermore, 29 mutated genes were identified by genome resequencing of high-yield strains, with 15 genes subjected to editing and validation. Two genes may individually influence α-amylase expression in A. oryzae by affecting membrane-associated multicellular processes and regulating the transcription of related genes. Conclusions The developed high-throughput screening strategy provides a reference for other filamentous fungi and Streptomyces. Besides, the strains with different excellent characteristics obtained by efficient screening can also provide materials for the analysis of genetic and regulatory mechanisms in the A. oryzae expression system.

Funder

the National Key Research and Development Program of China

National Natural Science Foundation of China

the Natural Science Foundation of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3