Optimization of biogas production from anaerobic co-digestion of fish waste and water hyacinth

Author:

Ingabire Hortence,M’arimi Milton M.,Kiriamiti Kirimi H.,Ntambara Boniface

Abstract

AbstractMany fresh water bodies face a great challenge of an invasive weed called water hyacinth (WH) which has great impacts on the environment, ecology, and society. Food and Agriculture Organization (FAO) estimates that over nine million tons of Fish wastes (FW) are thrown away each year. The fish waste generated poses environmental and health hazards because in most cases it is either disposed into pits or discarded onto the open grounds. Both WH and FW are potential substrates for biogas production. However, utilization of FW substrate alone has a limitation of producing a lot of amounts of volatile fatty acids (VFAs) and ammonia. Their accumulation in the digester inhibits substrate digestion. Consequently, as stand-alone it is not suitable for anaerobic digestion (AD). This can be overcome by co-digestion with a substrate like WH which has high carbon to nitrogen (C/N) ratio prior to biodigestion. Experimental variable levels for biogas were substrate ratio (WH:FW, 25–75 g), inoculum concentration (IC, 5–15 g/250 mL), and dilution (85–95 mL). Design-Expert 13 was used for optimization and results analysis. Response surface methodology (RSM) was used to examine the effects of operating parameters and identify optimum values for biogas yield. Optimum values for maximum biogas with the highest methane yield of 68% were found to be WH:FW ratio, 25:75 g, 15 g of IC, and 95 mL for dilution. The yield was 16% and 32% greater than FW and WH mono-digestion, respectively. The biogas yield was expressed as a function of operating variables using a quadratic equation. The model was significant (P < 0.05). All factors had significant linear and quadratic effects on biogas while only the interaction effects of the two factors were significant. The coefficient of determination (R2) of 99.9% confirmed the good fit of the model with experimental variables.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3