An optimized reverse β-oxidation pathway to produce selected medium-chain fatty acids in Saccharomyces cerevisiae

Author:

Garces Daza Fernando,Haitz Fabian,Born Alice,Boles Eckhard

Abstract

Abstract Background Medium-chain fatty acids are molecules with applications in different industries and with growing demand. However, the current methods for their extraction are not environmentally sustainable. The reverse β-oxidation pathway is an energy-efficient pathway that produces medium-chain fatty acids in microorganisms, and its use in Saccharomyces cerevisiae, a broadly used industrial microorganism, is desired. However, the application of this pathway in this organism has so far either led to low titers or to the predominant production of short-chain fatty acids. Results We genetically engineered Saccharomyces cerevisiae to produce the medium-chain fatty acids hexanoic and octanoic acid using novel variants of the reverse β-oxidation pathway. We first knocked out glycerolphosphate dehydrogenase GPD2 in an alcohol dehydrogenases knock-out strain (△adh1-5) to increase the NADH availability for the pathway, which significantly increased the production of butyric acid (78 mg/L) and hexanoic acid (2 mg/L) when the pathway was expressed from a plasmid with BktB as thiolase. Then, we tested different enzymes for the subsequent pathway reactions: the 3-hydroxyacyl-CoA dehydrogenase PaaH1 increased hexanoic acid production to 33 mg/L, and the expression of enoyl-CoA hydratases Crt2 or Ech was critical to producing octanoic acid, reaching titers of 40 mg/L in both cases. In all cases, Ter from Treponema denticola was the preferred trans-enoyl-CoA reductase. The titers of hexanoic acid and octanoic acid were further increased to almost 75 mg/L and 60 mg/L, respectively, when the pathway expression cassette was integrated into the genome and the fermentation was performed in a highly buffered YPD medium. We also co-expressed a butyryl-CoA pathway variant to increase the butyryl-CoA pool and support the chain extension. However, this mainly increased the titers of butyric acid and only slightly increased that of hexanoic acid. Finally, we also tested the deletion of two potential medium-chain acyl-CoA depleting reactions catalyzed by the thioesterase Tes1 and the medium-chain fatty acyl CoA synthase Faa2. However, their deletion did not affect the production titers. Conclusions By engineering the NADH metabolism and testing different reverse β-oxidation pathway variants, we extended the product spectrum and obtained the highest titers of octanoic acid and hexanoic acid reported in S. cerevisiae. Product toxicity and enzyme specificity must be addressed for the industrial application of the pathway in this organism.

Funder

Johann Wolfgang Goethe-Universität, Frankfurt am Main

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3