Novel endolysin LysMP for control of Limosilactobacillus fermentum contamination in small-scale corn mash fermentation

Author:

Patel Maulik H.,Lu Shao-Yeh,Liu Siqing,Skory Christopher D.

Abstract

Abstract Background Traditional bioethanol fermentation industries are not operated under strict sterile conditions and are prone to microbial contamination. Lactic acid bacteria (LAB) are often pervasive in fermentation tanks, competing for nutrients and producing inhibitory acids that have a negative impact on ethanol-producing yeast, resulting in decreased yields and stuck fermentations. Antibiotics are frequently used to combat contamination, but antibiotic stewardship has resulted in a shift to alternative antimicrobials. Results We demonstrate that endolysin LysMP, a bacteriophage-encoded peptidoglycan hydrolase, is an effective method for controlling growth of LAB. The LysMP gene was synthesized based on the prophage sequence in the genome of Limosilactobacillus fermentum KGL7. Analysis of the recombinant enzyme expressed in E. coli and purified by immobilized metal chelate affinity chromatography (IMAC) showed an optimal lysis activity against various LAB species at pH 6, with stability from pH 4 to 8 and from 20 to 40 °C up to 48 h. Moreover, it retains more than 80% of its activity at 10% ethanol (v/v) for up to 48 h. When LysMP was added at 250 µg/mL to yeast corn mash fermentations containing L. fermentum, it reduced bacterial load by at least 4-log fold compared to the untreated controls and prevented stuck fermentation. In comparison, untreated controls with contamination increased from an initial bacterial load of 1.50 × 107 CFU/mL to 2.25 × 109 CFU/mL and 1.89 × 109 CFU/mL after 24 h and 48 h, respectively. Glucose in the treated samples was fully utilized, while untreated controls with contamination had more than 4% (w/v) remaining at 48 h. Furthermore, there was at least a fivefold reduction in lactic acid (0.085 M untreated contamination controls compared to 0.016 M treated), and a fourfold reduction in acetic acid (0.027 M untreated contamination controls vs. 0.007 M treated), when LysMP was used to treat contaminated corn mash fermentations. Most importantly, final ethanol yields increased from 6.3% (w/v) in untreated contamination samples to 9.3% (w/v) in treated contamination samples, an approximate 50% increase to levels comparable to uncontaminated controls 9.3% (w/v). Conclusion LysMP could be a good alternative to replace antibiotics for mitigation of LAB contamination in biofuel refineries.

Funder

Agricultural Research Service

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3