Circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga Platymonas helgolandica

Author:

Shi Qianwen,Chen Cheng,He Tingwei,Fan Jianhua

Abstract

Abstract Background Microalgal starch can be exploited for bioenergy, food, and bioplastics. Production of starch by green algae has been concerned for many years. Currently commonly used methods such as nutrient stress will affect cell growth, thereby inhibiting the production efficiency and quality of starch production. Simpler and more efficient control strategies need to be developed. Result We proposed a novel regulation method to promote the growth and starch accumulation by a newly isolated Chlorophyta Platymonas helgolandica. By adding exogenous glucose and controlling the appropriate circadian light and dark time, the highest dry weight accumulation 6.53 g L−1 (Light:Dark = 12:12) can be achieved, and the highest starch concentration could reach 3.88 g L−1 (Light:Dark = 6:18). The highest production rate was 0.40 g L−1 d−1 after 9 days of production. And this method helps to improve the ability to produce amylose, with the highest accumulation of 39.79% DW amylose. We also discussed the possible mechanism of this phenomenon through revealing changes in the mRNA levels of key genes. Conclusion This study provides a new idea to regulate the production of amylose by green algae. For the first time, it is proposed to combine organic carbon source addition and circadian rhythm regulation to increase the starch production from marine green alga. A new starch-producing microalga has been isolated that can efficiently utilize organic matter and grow with or without photosynthesis.

Funder

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3