Structure-guided steric hindrance engineering of Bacillus badius phenylalanine dehydrogenase for efficient l-homophenylalanine synthesis

Author:

Wu Tao,Mu XiaoqingORCID,Xue Yuyan,Xu Yan,Nie Yao

Abstract

Abstract Background Direct reductive amination of prochiral 2-oxo-4-phenylbutyric acid (2-OPBA) catalyzed by phenylalanine dehydrogenase (PheDH) is highly attractive in the synthesis of the pharmaceutical chiral building block l-homophenylalanine (l-HPA) given that its sole expense is ammonia and that water is the only byproduct. Current issues in this field include a poor catalytic efficiency and a low substrate loading. Results In this study, we report a structure-guided steric hindrance engineering of PheDH from Bacillus badius to create an enhanced biocatalyst for efficient l-HPA synthesis. Mutagenesis libraries based on molecular docking, double-proximity filtering, and a degenerate codon significantly increased catalytic efficiency. Seven superior mutants were acquired, and the optimal triple-site mutant, V309G/L306V/V144G, showed a 12.7-fold higher kcat value, and accordingly a 12.9-fold higher kcat/Km value, than that of the wild type. A paired reaction system comprising V309G/L306V/V144G and glucose dehydrogenase converted 1.08 M 2-OPBA to l-HPA in 210 min, and the specific space–time conversion was 30.9 mmol g−1 L−1 h−1. The substrate loading and specific space–time conversion are the highest values to date. Docking simulation revealed increases in substrate-binding volume and additional degrees of freedom of the substrate 2-OPBA in the pocket. Tunnel analysis suggested the formation of new enzyme tunnels and the expansion of existing ones. Conclusions Overall, the results show that the mutant V309G/L306V/V144G has the potential for the industrial synthesis of l-HPA. The modified steric hindrance engineering approach can be a valuable addition to the current enzyme engineering toolbox.

Funder

National key research and development program of china

National Natural Science Foundation of China

111 project

High-end foreign experts recruitment program

National first-class discipline program of light industry technology and engineering

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3