Plastidial wax ester biosynthesis as a tool to synthesize shorter and more saturated wax esters

Author:

Vollheyde Katharina,Hornung Ellen,Herrfurth Cornelia,Ischebeck Till,Feussner IvoORCID

Abstract

Abstract Background Wax esters (WE) are neutral lipids that consist of a fatty alcohol esterified to a fatty acid. WE are valuable feedstocks in industry for producing lubricants, coatings, and cosmetics. They can be produced chemically from fossil fuel or plant-derived triacylglycerol. As fossil fuel resources are finite, the synthesis of WE in transgenic plants may serve as an alternative source. As chain length and desaturation of the alcohol and acyl moieties determine the physicochemical properties of WE and their field of application, tightly controlled and tailor-made WE synthesis in plants would be a sustainable, beneficial, and valuable commodity. Here, we report the expression of ten combinations of WE producing transgenes in Arabidopsis thaliana. In order to study their suitability for WE production in planta, we analyzed WE amount and composition in the transgenic plants. Results The transgenes consisted of different combinations of a FATTY ACYL-COA/ACP REDUCTASE (FAR) and two WAX SYNTHASES/ACYL-COA:DIACYLGLYCEROL O-ACYLTRANSFERASES (WSD), namely WSD2 and WSD5 from the bacterium Marinobacter aquaeoleoi. We generated constructs with and without plastidial transit peptides to access distinct alcohol and acyl substrate pools within A. thaliana cells. We observed WE formation with plastid and cytosol-localized FAR and WSD in seeds. A comparative WE analysis revealed the production of shorter and more saturated WE by plastid-localized WE biosynthesis compared to cytosolic WE synthesis. Conclusions A shift of WE formation into seed plastids is a suitable approach for tailor-made WE production and can be used to synthesize WE that are mainly derived from mid- and long-chain saturated and monounsaturated substrates.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3