Abstract
Abstract
Background
l-Ornithine is an important medicinal intermediate that is mainly produced by microbial fermentation using glucose as the substrate. To avoid competition with human food resources, there is an urgent need to explore alternative carbon sources for l-ornithine production. In a previous study, we constructed an engineered strain, Corynebacterium glutamicum MTL13, which produces 54.56 g/L of l-ornithine from mannitol. However, compared with the titers produced using glucose as a substrate, the results are insufficient, and further improvement is required.
Results
In this study, comparative transcriptome profiling of MTL01 cultivated with glucose or mannitol was performed to identify novel targets for engineering l-ornithine-producing strains. Guided by the transcriptome profiling results, we modulated the expression of qsuR (encoding a LysR-type regulator QsuR), prpC (encoding 2-methylcitrate synthase PrpC), pdxR (encoding a MocR-type regulator PdxR), acnR (encoding a TetR-type transcriptional regulator AcnR), CGS9114_RS08985 (encoding a hypothetical protein), and CGS9114_RS09730 (encoding a TetR/AcrR family transcriptional regulator), thereby generating the engineered strain MTL25 that can produce l-ornithine at a titer of 93.6 g/L, representing a 71.6% increase as compared with the parent strain MTL13 and the highest l-ornithine titer reported so far for C. glutamicum.
Conclusions
This study provides novel indirect genetic targets for enhancing l-ornithine accumulation on mannitol and lays a solid foundation for the biosynthesis of l-ornithine from marine macroalgae, which is farmed globally as a promising alternative feedstock.
Funder
Jiangxi Province Postgraduate Innovation Special Fund Project
National Natural Science Foundation of China
Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province
Jiangxi Provincial Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献