Potassium channel KCN11 is required for maintaining cellular osmolarity during nitrogen starvation to control proper cell physiology and TAG accumulation in Chlamydomonas reinhardtii

Author:

Xu Feifei,Pan Junmin

Abstract

Abstract Background Nitrogen (N) starvation in algae induces a variety of structural and metabolic changes including accumulation of triacylglycerol (TAG). Given the promising prospect of using algae as feedstock for biofuel production, accumulation of TAG upon N starvation becomes an ideal system to study TAG biosynthesis. Under nitrogen-depleted conditions, algae also accumulate compatible solutes such as sugar and certain amino acids, which is expected to elevate osmolarity in the cytoplasm. However, how osmoregulation is maintained and how it impacts on carbon metabolism, especially TAG accumulation under N starvation, are not well understood. Results We show here that potassium channel KCN11 localized in the contractile vacuole (CV) mediates osmoregulation during N starvation and loss of KCN11 profoundly affects cell physiology and TAG biosynthesis. KCN11 level is increased and the CV pulsation is accelerated. Loss of KCN11 induces aberrant CV cycle, inhibition of cell growth, increase of cell size, inhibition of chlorophyll loss and TAG accumulation. These effects are rescued by addition of sucrose to raise osmolarity in the culture medium, indicating that osmoregulation is required for cell adaptation to N starvation. Metabolomic analysis shows reduction of acetyl-CoA and accumulation of glyceraldehyde-3-phosphate in kcn11 mutant relative to the control under N starvation, indicating that defects in acetyl-CoA biosynthesis and some metabolic steps from glyceraldehyde-3-phosphate to TAG contribute to the decreased TAG accumulation due to loss of osmoregulation. Conclusions This work provides novel insight of osmoregulation during N starvation in the control of cell physiology and metabolism especially TAG accumulation. According to these findings, we propose that osmolarity should be carefully monitored during the industrial production of biodiesel.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3