Abstract
AbstractBackgroundCartilaginous disorders comprise a wide range of diseases that affect normal joint movement, ear and nose shape; and they have great social and economic impact. Mesenchymal stem cells (MSCs) provide a promising regeneration alternative for treatment of degenerative cartilaginous disorders. This study aimed to compare therapeutic potential of different types of laser activated MSCs to promote auricular cartilage regeneration. Twelve adult rabbit allocated equally in four groups, all animals received a surgical mid auricular cartilage defect in one ear; Group I (Positive control) injected sub-perichondrially with phosphate-buffered saline (PBS), Group II (ADMSC-transplanted group) injected adipose-derived MSCs (ADMSCs), Group III (BMMSCs-transplanted group) received bone marrow-derived MSCs (BMMSCs), and Group IV (EMSC-transplanted group) received ear MSCs (EMSCs) in the defected ear. The auricular defect was analyzed morphologically, histopathologically and immunohistochemically after 4 weeks. In addition, a quantitative real-time polymerase chain reaction was used to examine expression of the collagen type II (Col II) and aggrecan as cartilage growth factors.ResultsThe auricles of all treatments appeared completely healed with smooth surfaces and similar tissue color. Histopathologically, defective areas of control positive group, ADMSCs and EMSCs treated groups experienced a small area of immature cartilage. While BMMSCs treated group exhibited typical features of new cartilage formation with mature chondrocytes inside their lacunae and dense extracellular matrix (ECM). In addition, BMMSC treated group showed a positive reaction to Masson’s trichrome and orcein stains. In contrary, control positive, ADMSC and EMSC groups revealed faint staining with Masson’s trichrome and Orcein. Immunohistochemically, there was an intense positive S100 expression in BMMSCs (with a significant increase of area percentage + 21.89 (P < 0.05), a moderate reaction in EMSCs (with an area percentage + 17.97, and a mild reaction in the control group and ADMSCs (area percentages + 8.02 and + 11.37, respectively). The expression of relative col II and aggrecan was substantially highest in BMMSCs (± 0.91 and ± 0.89, respectively). While, Control positive, ADMSCs and EMSCs groups recorded (± 0.41: ± 0.21, ± 0.6: ± 0.44, ± 0.61: ± 0.63) respectively.ConclusionBMMSCs showed the highest chondrogenic potential compared to ADMSCs and EMSCs and should be considered the first choice in treatment of cartilaginous degenerative disorders.
Publisher
Springer Science and Business Media LLC
Reference49 articles.
1. Min S-H, Kim J-H, Lee M-I, Kwak H-H, Woo H-M, Shim J-H, et al. Evaluation of auricular cartilage reconstruction using a 3-dimensional printed biodegradable scaffold and autogenous minced auricular cartilage. Ann Plast Surg. 2020;85(2):185–93.
2. Jamil K, Chua K-H, Joudi S, Ng S-L, Yahaya NH. Development of a cartilage composite utilizing porous tantalum, fibrin, and rabbit chondrocytes for treatment of cartilage defect. J Orthop Surg Res. 2015;10(1):1–9.
3. Oh S-J, Park H-Y, Choi K-U, Choi S-W, Kim S-D, Kong S-K, et al. Auricular cartilage regeneration with adipose-derived stem cells in rabbits. Medi Inflam. 2018. https://doi.org/10.1155/2018/4267158.
4. Mobasheri A, Csaki C, Clutterbuck A, Rahmanzadeh M, Shakibaei M. Mesenchymal stem cells in connective tissue engineering and regenerative medicine: applications in cartilage repair and osteoarthritis therapy. Histol Histopatho. 2009;24(3):347–66.
5. Thorpe SD, Buckley CT, Vinardell T, O’Brien FJ, Campbell VA, Kelly DJ. The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-β3 induced chondrogenic differentiation. Ann Biomed Eng. 2010;38(9):2896–909.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献