Immature rat testis sustained long-term development using an integrative model

Author:

Ma Yubo,Chen Juan,Li Hecheng,Xu Fangshi,Chong Tie,Wang Ziming,Zhang Liandong

Abstract

Abstract Background Xenotransplantation has been primarily performed using fresh donor tissue to study testicular development for about 20 years, and whether the cultured tissue would be a suitable donor is unclear. In this study, we combined testicular culture and xenotransplantation into an integrative model and explored whether immature testicular tissue would survive and continue to develop in this model. Methods In the new integrative model group, the testes of neonatal rats on postnatal day 8 (PND 8) were cultured for 4 days ex vivo and then were transplanted under the dorsal skin of castrated nude mice. The xenografted testes were resected on the 57th day after xenotransplantation and the testes of rats in the control group were harvested on PND 69. The survival state of testicular tissue was evaluated from morphological and functional perspectives including H&E staining, immunohistochemical staining of 8-OH-dG, immunofluorescence staining, TUNEL assay, ultrastructural study, gene expression and protein analysis. Results (a) We found that complete spermatogenesis was established in the testes in the new integrative model group. Compared with the control in the same stage, the seminiferous epithelium in some tubules was a bit thinner and there were vacuoles in part of the tubules. Immunofluorescence staining revealed some ACROSIN-positive spermatids were present in seminiferous tubule of xenografted testes. TUNEL detection showed apoptotic cells and most of them were germ cells in the new integrative model group. 8-OH-dG immunohistochemistry showed strongly positive-stained in the seminiferous epithelium after xenotransplantation in comparison with the control group; (b) Compared with the control group, the expressions of FOXA3, DAZL, GFRα1, BOLL, SYCP3, CDC25A, LDHC, CREM and MKI67 in the new integrative model group were significantly elevated (P < 0.05), indicating that the testicular tissue was in an active differentiated and proliferative state; (c) Antioxidant gene detection showed that the expression of Nrf2, Keap1, NQO1 and SOD1 in the new integrative model group was significantly higher than those in the control group (P < 0.05), and DNA methyltransferase gene detection showed that the expression of DNMT3B was significantly elevated as well (P < 0.05). Conclusion The new integrative model could maintain the viability of immature testicular tissue and sustain the long-term survival in vivo with complete spermatogenesis. However, testicular genes expression was altered, vacuolation and thin seminiferous epithelium were still apparent in this model, manifesting that oxidative damage may contribute to the testicular development lesion and it needs further study in order to optimize this model.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3