Antimicrobial activity of compounds identified by artificial intelligence discovery engine targeting enzymes involved in Neisseria gonorrhoeae peptidoglycan metabolism

Author:

Kant Ravi,Tilford Hannah,Freitas Camila S.,Ferreira Dayana A. Santos,Ng James,Rucinski Gwennan,Watkins Joshua,Pemberton Ryan,Abramyan Tigran M.,Contreras Stephanie C.,Vera Alejandra,Christodoulides MyronORCID

Abstract

Abstract Background Neisseria gonorrhoeae (Ng) causes the sexually transmitted disease gonorrhoea. There are no vaccines and infections are treated principally with antibiotics. However, gonococci rapidly develop resistance to every antibiotic class used and there is a need for developing new antimicrobial treatments. In this study we focused on two gonococcal enzymes as potential antimicrobial targets, namely the serine protease L,D-carboxypeptidase LdcA (NgO1274/NEIS1546) and the lytic transglycosylase LtgD (NgO0626/NEIS1212). To identify compounds that could interact with these enzymes as potential antimicrobials, we used the AtomNet virtual high-throughput screening technology. We then did a computational modelling study to examine the interactions of the most bioactive compounds with their target enzymes. The identified compounds were tested against gonococci to determine minimum inhibitory and bactericidal concentrations (MIC/MBC), specificity, and compound toxicity in vitro. Results AtomNet identified 74 compounds that could potentially interact with Ng-LdcA and 84 compounds that could potentially interact with Ng-LtgD. Through MIC and MBC assays, we selected the three best performing compounds for both enzymes. Compound 16 was the most active against Ng-LdcA, with a MIC50 value < 1.56 µM and MBC50/90 values between 0.195 and 0.39 µM. In general, the Ng-LdcA compounds showed higher activity than the compounds directed against Ng-LtgD, of which compound 45 had MIC50 values of 1.56–3.125 µM and MBC50/90 values between 3.125 and 6.25 µM. The compounds were specific for gonococci and did not kill other bacteria. They were also non-toxic for human conjunctival epithelial cells as judged by a resazurin assay. To support our biological data, in-depth computational modelling study detailed the interactions of the compounds with their target enzymes. Protein models were generated in silico and validated, the active binding sites and amino acids involved elucidated, and the interactions of the compounds interacting with the enzymes visualised through molecular docking and Molecular Dynamics Simulations for 50 ns and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA). Conclusions We have identified bioactive compounds that appear to target the N. gonorrhoeae LdcA and LtgD enzymes. By using a reductionist approach involving biological and computational data, we propose that compound Ng-LdcA-16 and Ng-LtgD-45 are promising anti-gonococcal compounds for further development.

Funder

BBSRC

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3